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Abstract

We present a simple diffraction experiment with m-bonacci gratings as a new
interesting generalization of the Fibonacci ones. Diffraction by these non-
conventional structures is proposed as a motivational strategy to introduce
students to basic research activities. The Fraunhofer diffraction patterns are
obtained with the standard equipment present in most undergraduate physics
labs and are compared with those obtained with regular periodic gratings. We
show that m-bonacci gratings produce discrete Fraunhofer patterns char-
acterized by a set of diffraction peaks which positions are related to the
concept of a generalized golden mean. A very good agreement is obtained
between experimental and numerical results and the students’ feedback is
discussed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Diffraction is a standard topic in teaching wave optics in physics courses at the university
level [1]. This phenomenon appears when light interacts with an obstacle or aperture with a
size comparable to its wavelength. It plays an important role, for instance, in image forming
systems due to the finite sizes of lenses and other optical components. Typically, a single slit,
double slits, or periodic gratings are classical examples of objects employed to teach this
phenomena. Interesting educational software has been recently presented to give students the
possibility of analysing many different configurations in an easy way [2]. On the other hand,
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some creative experimental works have been published to increase the interest of students.
For example, the tracks of a compact disc [3], the spiral element of a spider orb-web [4], the
cells of the onion epidermis [5], and the array of pixels in CCD image sensors or LCD screens
[6] have been used as non-conventional diffraction gratings.

Other non-traditional diffractive objects such fractals are also very motivational because
they offer a way to introduce students to basic research activities [7]. Between the complete
order (periodic) and disorder (non-periodic), many other aperiodic distributions following
deterministic sequences also display characteristic discrete Fourier spectra [8]. In particular,
Fibonacci gratings are also one of the most common examples of aperiodic structures exhi-
biting two incommensurate periods (i.e., they are quasiperiodic). The ratio of these two
periods is equal to an irrational number known as the golden mean. This number has been
historically associated with the subjective concepts of equilibrium, harmony, or beauty and
can be found profusely in nature [9]. In technology, some examples of structures based on the
Fibonacci sequence are the nanostructured semiconductor superlattices [10] or the quasi-
periodic metamaterial multilayers [11]. In physics study, some other interesting examples
where the Fibonacci sequence and the golden mean appears include the study of a network of
resistors [12] and capacitors [13] or the coupled-oscillator problem [14]. In the case of a one-
dimensional Fibonacci grating, the Fourier spectrum produced by this optical element com-
prises a set of discrete diffraction peaks which relative positions are defined by the golden
mean [15]. This distinctive property has been also obtained with other advanced diffractive
optical components, for example with different kinds of diffractive lenses based on the
Fibonacci sequence [16].

In line with our previous work, we consider in this paper the m-bonacci grating as an
interesting generalization of the Fibonacci ones. In fact, Fibonacci is the particular case of a
m-bonacci sequence with m = 2 [17]. We present here a simple experiment (from a didactic
point of view) to verify the discrete Fourier spectra produced by these diffractive optical
elements with the standard equipment present in most undergraduate physics laboratories. For
comparison, the diffraction patterns produced by regular periodic gratings are also obtained.
We show numerically and experimentally that the diffraction peaks generated by m-bonacci
gratings are related to the concept of a generalized golden mean.

The outline of the paper is the following. In section 2, the new aperiodic gratings design
is given. In section 3, the basic theory is presented, including analytical expressions for the
diffraction patterns, and simulations for different structural parameters. Section 4 describes a
classroom experiment with m-bonacci gratings employed in electronic engineering under-
graduate courses at the Technical University of Valencia (Spain) to teach diffraction prop-
erties. Finally, in section 5, the students’ feedback is given and some conclusions are drawn.

2. m-bonacci diffraction gratings design

A m-bonacci grating is defined as a set of slits distributed aperidically according to the following
recursive procedure. Starting with m elements (seeds), N 0m,0 = , N 1,m,1 = and Nm j, =

N
i
j

m j i1 ,å = - with 1 < j < m, the m-bonacci numbers Nm j,{ } are obtained by the iterative rule
N Nm S i

m
m S i, 1 ,= å = - with S � m. For example, the well-known Fibonacci numbers (m-bonacci

numbers with m = 2) result from the sum of the two preceding numbers [18], so
N N NS S S2, 2, 1 2, 2= +- - for S � 2 with N 02,0 = and N 1,2,1 = resulting N i2, =
0, 1, 1, 2, 3, 5, 8, 13, 21, 34 .{ }¼ Tribonacci numbers (m = 3) are like Fibonacci
numbers, but the sequence starts with three predetermined terms N 0,3,0 = N 1,3,1 = and
N 1.3,2 = Besides, each Tribonacci number is the sum of the three preceding three ones,
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N N N NS S S S3, 3, 1 3, 2 3, 3= + +- - - for S � 3, so N 0, 1, 1, 2, 4, 7, 13, 24, 44, 81 .i3, { }= ¼
The generalized golden mean or golden ratio is defined as the limit of the ratio of two consecutive
m-bonacci numbers
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Taking into account that the m-bonacci can be expressed as the sum of the m preceding
numbers, it is easy to prove that the preceding limit results in the transcendental equation

0. 2m
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Solving this equation we obtain 1 5 1.6182
1

2
( )j = + = for m = 2 (Fibonacci) and

1 19 3 33 19 3 33 1.8393
1

3

1 3 1 3( ( ) ( ) )j = + - + + =/ / for m = 3 (Tribonacci).
In a similar way, a binary m-bonacci sequence can also be generated with m seed

elements, t 0 ,m,0 { }= t 1 ,m,1 { }= and t t t tm j m j m j m, , 1 , 2 ,0{ }= ¼- - with 1 < j < m, and the
successive elements of the sequence are obtained as the concatenation of the m previous ones,
t t t tm S m S m S m S m, , 1 , 2 ,{ }= ¼- - - with S � m. Particularly, the Fibonacci sequence (m = 2) is
defined by the seed t 0 ,2,0 { }= t 1 ,2,1 { }= and the concatenation rule t t tS S S2, 2, 1 2, 2{ }= - -
with S � 2, so:

t
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Note that t2,6 presents N 82,6 = type-1 elements and N 52,5 = type-0 elements, being the
total number of elements N 13 8 5.2,7 = = + In a similar way, for the construction of the
Tribonacci sequence (m = 3) we used the seed elements t 0 ,3,0 { }= t 1 ,3,1 { }= t 10 ,3,2 { }=
and the recursive relation t t t tS S S S3, 3, 1 3, 2 3, 3{ }= - - - with S � 3, so

t

t

t
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=
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= ¼

Note again that t3,6 presents N 133,7 = type-1 elements and N N 7 4 113,5 3,4+ = + =
type-0 elements, being the total number of elements N 24 13 7 4.3,7 = = + + In general,
the m-bonacci sequence at an arbitrary generation level S contains Nm S, type-1 elements and

Ni
m

m S i1
1

,å =
-

- = N Nm S m S, 1 ,-+ type-0 elements, so the total number of elements is
N N .m S i

m
m S i, 1 0

1
,= å+ =

-
- Then, the ratio (τm) between the number of type-1 and type-0 ele-

ments is m
N

N N

m S

m S m S

,

, 1 ,

t =
-+

≈
1

1mj -
when S → ∞. In the particular cases of the Fibonacci and

Tribonacci sequences, 2t ≈ 1.618
1

1 2
2

j= »
j -

and 3t ≈ 1.191,
1

13

»
j -

respectively.
With this encoding, an m-bonacci grating at a given generation level, S, can be con-

structed as a sequence of Nm S, 1+ slits with the same width a, but defining the transmittance
tm S l, , of the lth slit as the lth element of the binary array t ,m S, where t 1m S l, , = for transparent
zones (slits) and t    0m S l, , = for opaque zones. Then, an m-bonacci grating presents Nm S,

transparent slits and N Nm S m S, 1 ,-+ opaque zones aperiodically distributed, as shown in
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figure 1. In mathematical terms, the transmittance function T xm S, ( ) of an m-bonacci grating of
order S is given by
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3. Theoretical Fraunhofer diffraction patterns

Let us start by considering a one-dimensional diffraction grating described by a transmittance
function t(x). The Fraunhofer diffraction pattern is generated at the back focal plane of a lens
placed against the grating when a plane wave impinges on the grating. Within the scalar
approximation, and under monochromatic illumination, the focal irradiance is given by the
squared modulus of the Fourier transform of the transmittance function [19]
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where λ is the wavelength of the light, A is the amplitude of the incident plane wave, and f is
the focal length of the lens. To determine the diffraction properties of an m-bonacci grating,
we will obtain analytically its Fraunhofer pattern.

Replacing equation (4), the transmittance function t(x) by T xm S, ( ) given by equation (3)
and using the dimensionless transversal coordinate u ,

ax

f
= equation (4) can be rewritten as

I u
N

t i ul u
1

exp 2 sinc . 5m S

m S l

N

m S j,

,
2
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, ,

2

2
m S, 1

( ) ( ) ( ) ( )å p= -
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+

Note that the preceding equation has been normalized to have I 0 1m S, ( ) = .
By using equation (5), we have computed the Fraunhofer diffraction patterns provided by

the Fibonacci and Tribonacci gratings represented in figure 1. The results are shown in

Figure 1. Aperiodic gratings based on the m-bonacci sequence with m = 2 (Fibonacci)
and m = 3 (Tribonacci) at stage of growth S = 9 and S = 7, respectively. The
Fibonacci grating at stage S = 9 presents N2,10 = 55 zones with N2,9 = 34 transparent
slits and the Tribonacci grating at stage S = 7 presents N3,8 = 44 zones with N3,7 = 24
transparent slits.
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figure 2, together with the diffraction pattern corresponding to a conventional periodic grating
with an intermediate number of zones (49 in our simulations), for comparison purposes. It can
be seen that the main diffraction peaks in both cases coincide. However, the aperiodic
distribution of zones according to the m-bonacci sequence produces a splitting of the first
diffraction order in two irradiance peaks located at ua = 0.6165 and ub = 0.3831 for the
Fibonacci grating; and at uc = 0.5394 and ud = 0.46 for the Tribonacci grating. Thus, the
ratio of the transverse distances satisfies ua/ub ≈ τ2 = 1/(j2-1) = j2 for the Fibonacci

Figure 2. (a) Normalized Fraunhofer pattern irradiance versus the normalized
transverse coordinate u for a Fibonacci grating (S = 9), (b) for a Tribonacci grating
(S = 7), and (c) for a periodic grating (49 zones).
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grating and uc/ud ≈ τ3 = 1/(j3-1) for the Tribonacci grating. In general, in an m-bonacci
grating, the ratio of the position of the split first-order diffraction peaks tends to the ratio of
transparent and opaque zones, τm = 1/(jm-1). We have verified that this property is also
satisfied by m-bonacci gratings where the transparent and opaque zones have different width.
In these cases, the position of the two diffraction peaks also tends to τm, but its relative
maxima depend on the zones width. On the other hand, higher diffraction orders with a lower
irradiance also appear (not shown in figure 2). However, the transverse distances between the
local maxima corresponding to higher diffraction orders of the m-bonacci grating are not
related through the generalized golden mean jm.

4. Classroom experiments

Interference and diffraction are an integral part of the subject photonic devices in the
Bachelor’s Degree in Industrial Electronics and Automation Engineering at the Technical
University of Valencia, Spain. The theoretical background of this topic is supplemented with
theoretical lessons in the classroom and with laboratory work. During the 2013–2014 aca-
demic year, the instructor introduced the concept of ‘quasiperiodicity’ as a property of
ordered structures without translational periodicity. Quasiperiodic structures were presented
in class in this way as a new motivating topic related to the Nobel Prize in Chemistry 2011
awarded to Dan Shechtman for the discovery of quasicrystals [20]. The Fibonacci and the
here-presented m-bonacci sequences were the selected examples for one-dimensional quasi-
periodic structures studied in class.

To experimentally check the diffraction properties of m-bonacci gratings, we registered
the Fraunhofer diffraction patterns obtained when these quasiperiodic structures were illu-
minated with a monochromatic plane wave. The gratings were built by the students on
graphic arts film using a photoplotter with 2400 lpi resolution [21]. Electronic engineering
students were familiar with this technology because they use it to print photomasks for
integrated circuit production. Three different gratings were fabricated, namely a Fibonacci
grating with S = 9, a Tribonacci grating with S = 7, and a periodic grating with an inter-
mediate number of periods (49 lines). The basic zone width was a = 50 μm in all cases.

Figure 3 shows the setup used in our experiment. As a light source, a collimated laser
diode (λ = 650 nm) was employed. The involved opto-mechanical elements were out-of-the-
shelf components, available in any conventional teaching laboratory. The setup consisted of
an optical bench on which the other items were conveniently placed. First, the laser source

Figure 3. Experimental setup: (a) collimated laser diode; (b) diffraction grating; (c)
variable density filter, consisting in a couple of linear polarizers (one rotatable); (d) thin
lens; and (e) SLR (CMOS) sensor.
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was adjusted to provide a plane wave illumination onto the object grating. Next, two linear
polarizers controlled the irradiance level of the registered pattern by in-plane rotation of one
respect to the other. Finally, at the back focal plane of a thin lens (focal length f′ = 200 mm) a
digital SLR sensor, 18Mpx (22.3 × 14.9)mm, (Canon EOS550D camera) was used to
register the Fraunhofer diffraction patterns.

The registered irradiance patterns corresponding to the three different gratings are shown
in figure 4. These results are in full agreement with the theoretical predictions in figure 2.
From figure 4(c) (periodic grating), the expected splitting of the first diffraction order is
clearly seen in figures 4(a) and (b) (Fibonacci and Tribonacci gratings, respectively).
Moreover, according to the theoretical predictions, the first diffraction orders of the m-bonacci
gratings are obtained symmetrically at each side of the first-order diffraction of the periodic
grating. Furthermore, from a quantitative point of view, it is easy to check that the ratios
between their distances to the zero diffraction order agree with the relationship presented
previously. In fact, distances in figure 4(a) (Fibonacci) are xa = 268 pixels and xb = 166
pixels, and their ratio is xa/xb = 1.614, which is in good agreement with the theoretical value
τ2 ≈ 1/(j2-1) = j2 = 1.618 for S → ∞, being the discrepancy between the ratio xa/xb and
τ2 lower to 0.3%. For the Tribonacci case (figure 4(b)), we obtained xc = 237 pixels and
xd = 197 pixels, so that xc/xd = 1.203. Again, this result is well matched by the predicted
value τ3 ≈ 1/(j3-1) = 1.191, being the discrepancy between the ratio xc/xd and τ3
approximately 1%.

5. Conclusions

We have presented a simple optical experiment (from a didactical point of view) to analyse
the Fraunhofer diffraction properties of m-bonacci gratings with the standard equipment
available in most undergraduate physics laboratories. We have shown that the diffraction
peaks generated by m-bonacci gratings are related to the generalized golden mean. In our
opinion, the proposed experiment could be a motivational strategy to complete the topics of

Figure 4. Experimental Fraunhofer diffraction patterns of a: (a) Fibonacci grating
(S = 9); (b) Tribonacci grating (S = 7); and (c) conventional periodic grating (49
lines). The basic zone width was a = 50 μm in all three cases.
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interference and diffraction of light waves in physics and engineering courses, and to
introduce students to basic research activities. In fact, this experience has been implemented
in experimental classes with successful results. An anonymous questionnaire given to elec-
tronic engineering students to assess the experience showed an overall high score of 8.9 (in a
1 to 10 scale, where 10 is the highest score). The students thought it was very interesting and
motivating (scoring 9.2), but with a slight mathematical difficulty (scoring 7.8). On the other
hand, the experiment helped students to understand the basic principles of quasiperiodic
structures (scoring 8.7). It is worth mentioning that, with this experimental methodology,
other aperiodic structures such as the Thue-Morse gratings can be also studied.
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