Parallel fractional correlation:
implementation

an optical
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An optical setup to obtain all the fractional correlations of a one-dimensional input in a single display is
implemented. The system works as a multichannel parallel correlator for a continuous set of fractional

orders and presents a variable shift variance.
simulations are performed to illustrate the performance of our proposal.
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1. Introduction

Among several mathematical operations that can be
optically implemented, correlation is one of the most
important because it can be used for different appli-
cations, such as pattern recognition and object local-
ization. Optical correlation can be performed by use
of the Fourier transform property of coherent optical
systems. To implement this operation, several opti-
cal architectures were developed, such as the classi-
cal VanderLugt and joint transform correlators.!:2
Because conventional correlation is a shift-invariant
operation, the correlation output simply moves if the
object translates at the input plane. In many cases
this property is necessary, but there are situations in
which the position of the object provides additional
information (for example, in image coding or crypto-
graphic applications), and so shift invariance is a
disadvantage.

The fractional correlation is a generalization of
the classical correlation that employs, instead of the
conventional Fourier transform, the optical frac-
tional Fourier transform (FRT) of a given fractional
order p.3* This operation was optically imple-
mented by Mendlovic et al.56 and was generalized
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in Refs. 7 and 8. In these studies the fractional
correlation is obtained as the inverse Fourier trans-
form of the product of both the FRTSs of the reference
and input objects, but for a single fractional order p
atatime. The fractional order involved in the FRT
controls the amount of shift variance of the corre-
lation. As is well known, the shift-variance prop-
erty modifies the intensity of the correlation output
when the input is shifted. In several pattern-
recognition applications this feature is useful, for
example, when an object should be recognized in a
relevant area and rejected otherwise or when the
recognition should be based on certain pixels in
systems with variable spatial resolution. How-
ever, the optimum amount of variance for a specific
application is frequently difficult to predict, and
therefore more complete information would cer-
tainly be attained from a display showing several
fractional correlations at the same time. Ideally,
such a display should include the classical shift-
invariant correlation as the limiting case. That is
the motivation of this paper; here we extend the
ideas proposed in Ref. 8 to present an optical mul-
tichannel fractional correlator. The proposed op-
tical system generates a simultaneous display of
fractional correlations of a one-dimensional (1-D)
input for a continuous set of fractional orders in the
range [0, 1]. In Section 2 we first describe the
optical arrangement used to record continuous mul-
tichannel fractional filters, and then we show how
the same setup can be modified to implement a
parallel fractional correlator. In Section 3 we
show experimental results and numerical simula-
tions obtained with the described proposal.
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Fig. 1. Top view of the optical setups to achieve (a) the filter H, which stores the Radon—Wigner display of the 1-D input #(x,) and (b) the

parallel fractional correlation between #(x,) and #(x, + A) at the output plane.

L, cylindrical lens.

2. Parallel Fractional Correlation

The FRT of order p of a given two-dimensional (2-D)
function f (x,, y,), defined mathematically as

FAHSf(x, 9)} = ¢ explipm/2) ex [i’"(x +57)

sin(pw/2) tan(pw/2)

x f f " (%o, yo)exp m}

12m(xxy + yyo)

sin(pw/2) }dxodyo,

(1)

can be optically obtained by free-space propagation of
an spherical wave front impinging on a input trans-
parency with amplitude transmittance ¢ (xy, yo) = f
(x0/8, ¥o/S), where s is the scale parameter used for
the construction of the transparency. In effect, as
was stated in Refs. 9 and 10 and demonstrated ex-
perimentally in Ref. 11, every Fresnel diffraction pat-
tern of the transparency illuminated with a
monochromatic point source corresponds to a scaled
version of a certain FRT of the same input and vice
versa. The mathematical relationship between the
Fresnel diffraction field, obtained at distance R, of
the input illuminated with a spherical wave front of

X exp[ —
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M, and M,, mirrors; BS, beam splitter; L, varifocal lens;

radius z and wavelength A, and the FRT of order p, of

the input function, is given by10.12

—im(x®+ y2) z(1 - Mp) -R,
zM,}R,

Uzp,Rp(x, y) = exp[

(2)

where M), is the magnification of the optical FRT.

For each fractional order the values of M,, and R, are

related to the system parameters, s, A, and z through
s\ 'tanpm/2

P 1+ s’(\z) ' tan pw/2’

3)

_ 1+ tan pw/2 tan pm/4
P14+ s*(Z2) Ttanpw/2

(4)

Equations (2)—(4) allow one to recognize that by illu-
mination of an input transparency with a spherical
wave front converging to an axial point S, all the FRT
in the range [0, 1] can be obtained simultaneously,
apart from a quadratic phase factor and a scale fac-
tor. The FRTs are axially distributed between the
input transparency (p = 0) and the virtual source S
(p = 1) in which the optical Fourier transform of the
input is obtained.
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Fig. 2. Intensity patterns of the output plane of the correlator:

(a) and (b) computer simulations for displacements A = 0.5 mm
and A = 0.7 mm, respectively; (c) and (d) experimental results.

As was shown in Ref. 13, for 1-D signals the optical
FRTs can be displayed simultaneously in a single 2-D
chart in which one axis is the fractional order p and
the other axis x is the coordinate transversal to the
direction of propagation. This kind of representa-
tion, called the Radon—Wigner display, provides the
basis for multichannel operations on 1-D signals.
The optical setup to obtain it is represented in Fig.
1(a). A1-Dinput, ¢(x,), is illuminated by a cylindri-
cal wave front (generated by the lens L) converging
to a line segment normal to the optical axis S. Ac-
cording to Eq. (3), the FRTSs of orders ranging in the
interval [0,1] are located at distances R, from the
input with a scale factor given by Eq. (4). In this
way each plane between the input and S contains a
different scaled 1-D FRT of the object. The optical
element L is a lens designed to image the axially
distributed FRT channels at one time in a single
plane. Consequently, its focal distance must be dif-
ferent for each value of the y coordinate, normal to
the plane in Fig. 1. Although the magnification for
every fractional order at the output plane could never
be simultaneously the proper one, a quite good ap-
proximation can be obtained with a commercially
available ophthalmic lens. The limits of this ap-
proximation have been already discussed in Ref. 13 in

—
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Fig. 3. Normalized fractional correlations for several fractional
orders p obtained from different slices of the intensity distributions

shown in Figs. 2(a) and 2(c) for the case of A = 0.5 mm: (a)
numerical results; (b) experimental results.

which it was shown that the power of this lens is fixed
by the constraint conditions that the distances z, [,
and a’ in Fig. 1 must satisfy [see Egs. (16) and (17) of
Ref. 13. Then with the assumption that the object
distance for each 1-D channel (order p) is a,, and that
the image distance for the same channel is a’, the
exact relationship between the FRT and the Fresnel
diffraction pattern at the filter plane in Fig. 1(a) is the
following,

2 1-M? —R 1
U,(x) = exp{ fi*rrxTh [Z( zé’p) p+;

1
T H Flt(x0)}, )

P L

where M is the magnification introduced by the vari-
focal lens L,

a'[1 - s*(\z) ! tan pm/2]

2 -1 1 1 ’ (6)
1—5s*(\)"" tan pw/2 .7

M (p) =
1

which compensates for the scale error given in Eq. (2):
i.e., MpML = _1.
By use of the spectral domain, the fractional cor-
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Fig. 4. Normalized fractional correlations for several fractional
orders p obtained from different slices of the intensity distributions
shown in Figs. 2(b) and 2(d) for the case of A = 0.7 mm: (a)
numerical results; (b) experimental results.

relation between two 1-D functions #(x) and ¢'(x) is
defined as®

CP(x) = F HF {t(xo)} F* {t'(x)}}, (7

where %” {} represents the FRT operator defined by
Eq. (1) and %7*{ }isits complex conjugate. Itis easy
to show that all the phase terms involved in the FRT
definition cancel out in Eq. (7). Moreover, with the
above definition the classical correlation is obtained if
we setp = 1.

The product inside the outer brackets of Eq. (7) can
be optically achieved simultaneously for all fractional
orders, ranging between p = 0 and p = 1, following a
two-step process. In the first stage, with the exper-
imental configuration shown in Fig. 1(a), all the FRTs
of t(x,) are obtained in parallel at the filter plane by
means of the varifocal lens L by a proper selection of
the parameters z, [, ¢’ in Eq. (4). A matched filter is
obtained at this plane by recording an hologram of
these FRTs with a reference wave front at an angle 6.
In the second stage, the obtained multichannel-
matched filter is located at the filter plane, and the
input function to be correlated is located at the input
plane [see Fig. 1(b)]. Because the transmittance of
the holographic filter has one term proportional to
the complex conjugate of the field in Eq. (5), for each
fractional order channel, the field immediately be-
hind the filter plane has one term proportional to the
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Fig. 5. Amplitude transmittance of the nonsymmetric double slit.

product of the complex conjugate of the FRT of the
reference function ¢'(xy) and the FRT of the input
function #(x,). Thus the multiplicative phase factor
in Eq. (5) and the corresponding one of the matched
filter cancel out. Besides, although the experimen-
tal FRT for a given order p is approximated owing to
the scale error, the experimental fractional correla-
tion can be obtained exactly because this error affects
both %” and %*. This property can be proved sim-
ply by incorporating Eq. (5) into Eq. (7). Finally, the
diffracted field at the angle 6 is collected by the lens
L, which performs a 1-D Fourier transform. Be-
cause each fractional order p, ranging between p = 0
and p = 1, has an independent 1-D correlation chan-
nel, all the fractional correlations for this range of p
are obtained simultaneously at the output plane [see
Eq. (7)]. Thus a 2-D display is obtained in which the
fractional correlations are ordered in a continuous
display along the axis normal to the plane shown in
Fig. 1(b). It must be emphasized that the fractional
correlation obtained by the optical arrangement of
Fig. 1 is free from the scale and phase errors intro-
duced by the optical generation of the FRT, but only
when the fractional orders are equal. The exact
cross-fractional correlation® cannot be implemented
with this proposal because the phase terms will not
cancel out.

3. Experimental Results and Discussion

To illustrate the use of the parallel fractional corre-
lator, we perform a simple experiment to analyze the
shift-variant property of the FRT. To accomplish
this, we obtain the optical fractional correlations be-
tween a rectangle function (the reference),

t(xo) = rect(xo/a),
with @ = 1 mm, and a shifted version of it (the input),
t'(xo) = t(xo + A),

using the experimental setup shown in Fig. 1. In
the first step an holographic filter H [see Fig. 1(a)]
stores the Radon—Wigner display associated with the
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Fig. 6. Fractional correlations for several fractional orders p obtained at the output plane of the setup of Fig. 1.
a gray level (left), and the corresponding three-dimensional plot (right).

is the same object but with two different shifts (see the main text).

2-D version of #(xy). An expanded and collimated
He-Ne laser beam is used as a light source from
which the beam splitter (BS) produces two coherent
beams. One of them generates the Radon—Wigner
transform of the input at the filter plane!? while the
other is used as reference light beam at the angle 6.
The object transparency is illuminated through a cy-
lindrical lens focusing at the axial point S, and the
varifocal lens L is an ophthalmic progressive lens of
power +2.75D and +5.75D in the so-called distance
portion and near portion, respectively. The relevant
distances in the optical system are z = 426 mm, [ =
646 mm, and ¢’ = 831 mm. In the second step the
optical system is slightly modified as is shown in Fig.
1(b); a lens L, in a 2-f configuration along the x
coordinate, is added to obtain the multiple correlation
at the output plane. In the experiments the input
transparency is translated a fixed length, A, along the

Intensity patterns as
The filter is registered for the double slit of Fig. 5. The input

x, axis to simulate a transversal shift. A CCD cam-
era is used to acquire the experimental data at the
output plane. Two different positions of the input
object were investigated: A = 0.5 mm, and A = 0.7
mm. Figure 2 shows the respective intensity pat-
terns at the correlation plane computed numerically,
Figs. 2(a) and 2(b), and the corresponding experimen-
tal results, Figs. 2(c) and 2(d). A profile along a line
parallel to the x, axis, in the displays of Fig. 2, cor-
responds to the fractional correlation of a single order
p. As can be seen, for a fixed displacement A, the
correlation peak decreases for p decreasing. As ex-
pected for p = 1, the correlation peak is the classical
one located at the input position. For values rang-
ing between p = 1 and p = 0.5, the correlation peak
did not change appreciably. Even for the small
shifts in our experiment, the shift-variant property
becomes evident for values p = 0.25. In Figs. 3 and
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4 we show the profile peaks of the fractional correla-
tion, for several fractional orders p, obtained from
Fig. 2. It can be seen that as p becomes lower the
peak degenerates and shifts disproportionately to-
ward the object position.

In a second example a more complex object is used
as a reference object. The amplitude transmittance
of this object is shown in Fig. 5. It represents a
double (nonsymmetric) slit with a continuous gray-
level amplitude transmittance. The continuous
transition between the shift-variant case (p = 0) to
the shift-invariant case (p = 1) is confirmed in Fig. 6
in which the numerical simulation of the fractional
correlation, when the reference object is shifted a
fixed amount at the input plane, is considered. Fig-
ure 6(a) shows the fractional correlations when the
input is shifted an amount of one-half of the object
size, and Fig. 6(b) shows the fractional correlation
when the input is shifted an amount equal to the size
of the object. The variant behavior of the fractional
correlation can be clearly seen when Fig. 6(a) is com-
pared with Fig. 6(b). Both displays coincide near to
p = 1 (except for the location of the maxima), but for
lower values of p the fractional correlation is highly
dependent on the magnitude of the shift.

Summarizing, we have proposed and experimen-
tally implemented an optical setup for obtaining the
fractional correlations for a continuous set of frac-
tional orders. The output of the system shows a
variable degree of space variance ranging from the
pure shift-variance case (p = 0) to the pure shift-
invariance case (p = 1, classical correlation). This
kind of representation provides information about
the object, such as classical correlation, but also
quantifies its departure from a given reference posi-
tion.
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