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White-light optical implementation of the fractional
Fourier transform with adjustable order control

Enrique Tajahuerce, Genaro Saavedra, Walter D. Furlan, Enrique E. Sicre, and
Pedro Andrés

An optical implementation of the fractional Fourier transform ~FRT! with broadband illumination is
proposed by use of a single imaging element, namely, a blazed diffractive lens. The setup displays an
achromatized version of the FRT of order P of any two-dimensional input function. This fractional order
can be tuned continuously by shifting of the input along the optical axis. Our compact and flexible
configuration is tested with a chirplike input signal, and the good experimental results obtained support
the theory. © 2000 Optical Society of America
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1. Introduction

In spite of its recent introduction in optics, the frac-
tional Fourier transform ~FRT! has become an exten-
sively used tool.1 Among other possibilities, it has
been applied to describe the light propagation
through optical systems2–4 and to characterize light
eams,5 and, in particular, its space-variant charac-

ter has been exploited in several optical information-
processing applications.6–9

Aside from the original gradient-index-lens de-
vice,1 several optical implementations of the FRT
with fixed order have been proposed with use of one
or two lenses.10,11 In these systems the design pa-
rameters are determined by the fractional order P to
be achieved, and, consequently, this order cannot be
modified unless either more lenses are added to the
setup12 or several basic modules are cascaded.13

Recently, a lensless configuration for obtaining the
FRT of any arbitrary order was reported,14 in which
the fractional order can be varied continuously by a
simple shift of the input and the output planes along
the optical axis. In Ref. 14 it is also recognized for
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Investigaciones Ópticas, Casilla de Correo 124, 1900 La Plata,
Argentina.

Received 28 May 1999; revised manuscript received 21 October
1999.

0003-6935y00y020238-08$15.00y0
© 2000 Optical Society of America
238 APPLIED OPTICS y Vol. 39, No. 2 y 10 January 2000
what is believed to be the first time that, aside from
a phase factor and maybe a scaling error, all the
FRT’s of a given input function can be obtained si-
multaneously, dispersed along the optical axis, by
free-space propagation of the electromagnetic field.
This variable-order capability has been successfully
applied to image processing15 and to the optical pro-
duction of some phase-space representations of sig-
nals.16

One of the main drawbacks of the above optical
implementations is the use of monochromatic coher-
ent illumination, which leads, in general, to a poor
signal-to-noise ratio. Moreover, when used in opti-
cal processing, their application is restricted to gray-
scale images. Therefore there is a strong practical
motivation to design an optical setup for overcoming
these limitations by use of broadband illumination.

In this paper we present an optical implementation
of the FRT of a two-dimensional signal, using a white-
light point source. The setup contains a single op-
tical element, namely, a blazed diffractive lens ~DL!.

he proposed device provides an achromatized ver-
ion of the FRT of order P of the input signal along the
ines of what is discussed in Refs. 17 and 18. In this
ay it is able to superimpose, to a first-order approx-

mation, all the monochromatic versions of the FRT of
rder P generated by the different spectral compo-
ents of the incident light in a single plane and with
he same magnification. This new, to our knowl-
dge, optical proposal shows an adjustable fractional-
rder control, as in Ref. 14, such that the order of the
chromatic FRT can be continuously tuned by appro-
riate shifting of the input and the output planes
long the optical axis. For the sake of completeness
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the basic relationships between fractional Fourier
transformation and propagation in free space are re-
viewed in Section 2. In Section 3 we present the
theoretical basis of our compact white-light order-
tunable FRT device, and in Section 4 we show some
experimental results for a chirplike test signal.

2. Coherent Free-Space Fractional-Fourier-Transform
Implementation

The FRT of a given two-dimensional function g~r! is
defined as19,20

GP~w! 5
i exp~if!

sin f
expSipuwu2

tan fD **
2`

1`

g~r!

3 expSipuru2

tan fDexpS2
i2pr z w

sin f Dd2r, (1)

where f 5 Ppy2, P being the order of the FRT. Note
that the FRT is a periodic function in terms of P, with
period 4. In addition, since GP12~w! 5 GP~2w!, the
whole information about the FRT of any order can be
obtained by consideration of only values of P ranging
in the interval ~0, 2!. The FRT turns out the con-
ventional Fourier transformation for P 5 1, whereas
P 5 2 provides an inverted replica of the object,
g~2r!.

It is well known that there is a close relationship
between the FRT and the Fresnel diffraction inte-
gral. As was pointed out in Refs. 14 and 21, every
Fresnel diffraction pattern of a transparency illu-
minated with a monochromatic point source corre-
sponds to a scaled version of a certain FRT of the
same input, and vice versa. To establish this con-
nection in mathematical terms, let us assume that
a monochromatic spherical wave front illuminates
an input object, as is illustrated in Fig. 1. The field
amplitude across a transversal plane at a distance
R from the diffracting screen is given, within the
Fresnel approximation, by

UR~r; l, z! 5
i

lR
expS ip

lR
uru2D **

2`

1`

t~r0!

3 expSip
l

z 1 R
zR

ur0u2D
3 expS2

i2pr0 z r
lR Dd2r0, (2)

where t~r0! represents the two-dimensional complex
mplitude transmittance of the object, l is the wave-
ength of the illuminating wave front, and z is the

distance from the focus of the illumination field to the
object plane. Note that z , 0 when a spherical con-
verging beam acts as incident illumination. As is
usual in the optical implementation of mathematical
transformations, we introduce the dimensionless
variables

r 5 ~r0ys!, w 5 ~rys!, (3)
where s is a scale parameter. In this way Eq. ~2! can
be rewritten as

ÛR~w; l, z! 5
is2

lR
expSips2

lR
uwu2D **

2`

1`

g~r!

3 expSip
l

z 1 R
zR

s2uru2D
3 expS2

i2ps2r z w
lR Dd2r, (4)

being ÛR~w; l, z! 5 UR~r; l, z! and g~r! 5 t~r0!.
When we compare Eqs. ~1! and ~4!, aside from the
quadratic phase factors that precede both integrals,
the mathematical relationship between the FRT of
order P of the signal g~r! and the Fresnel diffraction

eld generated by the input amplitude transmittance
~r0! 5 g~r0ys!, under spherical illumination, can be

expressed as14

ÛR~w; l, z! } GPF w
M~P; l, z!G . (5)

The FRT is obtained at a distance

R~P; l, z! 5
f ~l!tan~Ppy2!

1 2 @ f ~l!yz#tan~Ppy2!
(6)

from the input plane, and the scale factor error is

M~P; l, z! 5
1

$1 2 @ f ~l!yz#tan~Ppy2!%cos~Ppy2!
. (7)

In Eqs. ~6! and ~7!, f ~l! 5 s2yl. We recognize that
this parameter is simply the standard focal length
used in many FRT-related papers.

It is important to note that by use of this simple
configuration the FRT’s of all orders of the input are
obtained simultaneously by free-space propagation.
In addition, a proper selection of the distance z allows
one to obtain a specific FRT without scale error.
However, from a practical point of view, this setup
shares all the drawbacks associated with coherent

Fig. 1. Free-space FRT setup.
10 January 2000 y Vol. 39, No. 2 y APPLIED OPTICS 239
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optical processors. To overcome them, in Section 3
we present a white-light optical implementation of
the FRT.

3. Achromatic Fractional Fourier Transformer

The use of the setup in Fig. 1 for producing a poly-
chromatic optical implementation of the FRT fails
because of the dependence of both the distance R~P;

, z! and the magnification M~P; l, z! on the wave-
ength. In this way the monochromatic versions
f the FRT with a fixed fractional order P are
hromatically dispersed along the optical axis and
how a different magnification in each chromatic
hannel. Since the output plane contains the in-
oherent superposition of all spectral components,
his fact results in a chromatic blur of the output
RT.
To quantify this chromatic blurring, let us choose

s the output plane that in which the FRT of order P
f the input signal is obtained for a typical wave-
ength l0. According to Eq. ~6!, over the same plane

we achieve, for each wavelength l, the FRT of a dif-
ferent order, Q~l, P!, such that

R~Q; l, z! 5 R~P; l0, z!. (8)

In addition, the magnification error in each chromatic
component is given, according to Eq. ~7!, by M~Q; l,
!.
To evaluate the above chromatic deviations in each

hromatic channel, we introduce the relative errors

DQ~l, P! 5
Q~l, P! 2 P

P
, (9)

DM~l, P! 5
M@Q~l, P!; l, z# 2 M~P; l0, z!

M~P; l0, z!
. (10)

By use of Eqs. ~6!–~8!, these error functions can be
expressed as

DQ~l, P! 5
2

Pp
arctanF l

l0
tan~Ppy2!G 2 1, (11)

DM~l, P! 5 F1 1 ~lyl0!
2 tan2~Ppy2!

1 1 tan2~Ppy2! G1y2

2 1. (12)

A plot of these relative errors versus the wave-
ength l, for both the fractional order and the mag-
ification, is shown in Figs. 2~a! and 2~b!,

respectively, for different values of the selected order
P. In this figure we assume that l0 lies in the mid-
dle of the visible region and that the spectral content
of the incident light covers the whole visible spec-
trum. We note that chromatic errors to as great as
640% are achieved in the extremes of the visible
region for certain fractional orders P, these values
being unacceptable in practice.

To overcome this drawback, let us modify the op-
tical setup in Fig. 1 by introducing a blazed DL on the
transversal plane containing the real focus of the
incident broadband spherical wave front, as is de-
picted in Fig. 3. The DL acts as an optical imaging
40 APPLIED OPTICS y Vol. 39, No. 2 y 10 January 2000
element with a focal length Z~l! that is proportional
to l21, namely, Z~l! 5 Z0l0yl. The constant Z0 is
simply the value of the focal length for the reference
wavelength l0. In this way, within the paraxial ap-
proximation, a DL is characterized by an amplitude
transmittance

D~r! 5 expS2
ipuru2

l0 Z0
D . (13)

Fig. 2. Relative chromatic errors obtained when broadband illu-
mination is used in the setup shown in Fig. 1: ~a! fractional-order
rror, ~b! magnification error. Note that only values P [ ~0, 1! are
epresented in ~b!, since the same curves are obtained by exchange
f P by 2 2 P. In both plots we choose l0 5 600 nm.
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It is straightforward to show that the diffraction
pattern obtained at a distance d from the DL is given,
aside from some constants and phase factors, by

U9d~r; l, z, Z0! 5 **
2`

1`

t~r0!expS2
ipur0u2

laz D
3 expSi2pr0 z r

lad Dd2r0, (14)

where

a 5 zS1
d

2
1
z

2
l

l0 Z0
D . (15)

By performing the change of variables indicated in
Eq. ~3!, we obtain

Û9d~w; l, z, Z0! 5 **
2`

1`

g~r!expS2
ips2uru2

laz D
3 expSi2ps2r z w

lad Dd2r, (16)

here Û9d~w; l, z, Z0! 5 U9d~r; l, z, Z0!. Finally, by
comparing this result with definition ~1!, we have

Û9d~w; l, z, Z0! } GPF w
M9~P; l, z, Z0!

G , (17)

if we select the distance d as

d~P; l, z, Z0! 5
zZ0

Z0 1 z
l

l0
2

Z0 f ~l!

z
tan~Ppy2!

. (18)

Here the scale factor error is

M9~P; l, z, Z0! 5
d~P; l, z, Z0!

z cos~Ppy2!
. (19)

Equations ~18! and ~19! state that the FRT of frac-
tional order P is still chromatically dispersed both in
longitudinal position and in transversal magnifica-
tion. However, unlike the setup in Fig. 1 @see Eqs.

Fig. 3. White-light fractional Fourier transformer.
~6! and ~7!#, now it is possible to partially compensate
both chromatic errors by a proper selection of the
geometrical parameters of the setup.

To this end we pay attention to the plane in which
the FRT of order P for the reference wavelength l0 is
located. Over this plane each wavelength l provides
a FRT of order Q9~l, P, z, Z0!, where Q9 is the solution
of the equation

d~Q9; l, z, Z0! 5 d~P; l0, z, Z0!; (20)

i.e., according to Eq. ~18!,

tan~Q9py2! 5 S l

l0
2 1D l

l0

z2

f ~l0!Z0
1

l

l0
tan~Ppy2!.

(21)

Moreover, each FRT of order Q9 is affected by a dif-
ferent scaling error given by

M9~Q9; l, z, Z0! 5
d~P; l0, z, Z0!

z cos~Q9py2!

5 M9~P; l0, z, Z0!

3 F1 1 tan2~Q9py2!

1 1 tan2~Ppy2! G
1y2

. (22)

The design of our setup is carried out by imposition
f an achromatic behavior around the reference
avelength l0 at the output plane to both the frac-

tional order and the magnification factor. This ap-
proach guarantees that both functions present
stationary values in the vicinity of l 5 l0. In math-
ematical terms we require

d
dl

Q9~l, P, z, Z0!U
l0

5 0, (23)

d
dl

M9~Q9; l, z, Z0!U
l0

5 0. (24)

From Eq. ~22! it is apparent that M9 depends on l
only through the quantity Q9. Therefore Eqs. ~23!
and ~24! lead to the same requirement. Combining
Eqs. ~21! and ~23!, we obtain

z2 5 2Z0 f ~l0!tan~Ppy2!. (25)

This result provides the value of the distance z from
the DL to the input transparency that has to be se-
lected to achieve an achromatized version of the FRT
of order P of the input signal. It is worth mentioning
that Eq. ~25! also imposes the prescription for the
convergence or divergence of the DL employed in the
design, since a real solution for the distance z is ob-
tained only when Z0 tan~Ppy2! , 0. Note also that
only solutions with z , 0 are physically acceptable in
the proposed setup, as can be seen in Fig. 3.

To complete the analysis of our proposal, we test
the performance of the optimized device by obtaining
the residual chromatic errors at the output plane.
10 January 2000 y Vol. 39, No. 2 y APPLIED OPTICS 241
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The substitution of the constraint ~25! into Eqs. ~21!
and ~22! leads to

tan~Q9py2! 5 $1 2 @~lyl0! 2 1#2%tan~Ppy2!, (26)

M9~Q9; l, z, Z0! 5 M9~P; l0, z, Z0!

3 S1 1 $1 2 @~lyl0! 2 1#2%2 tan2~Ppy2!

1 1 tan2~Ppy2! D1y2

. (27)

In the previous equation the parameter

M9~P; l0, z, Z0! 5
d~P; l0, z, Z0!

z
@1 1 tan2~Ppy2!#1y2

(28)

is the scale factor of the P-order FRT obtained for l 5

0, being

d~P; l0, z, Z0! 5
z2

z 2 2f ~l0!tan~Ppy2!
(29)

the distance from the DL to the output plane.
For characterizing these residual chromatic aber-

rations over the output plane, we calculate the rela-
tive error in the fractional order for each chromatic
channel through the function

DQ9~l, P! 5
Q9~l, P, z, Z0! 2 P

P

5
2

Pp
arctan($1 2 @~lyl0! 2 1#2%

3 tan~Ppy2!) 2 1. (30)

The relative error in the magnification factor is cal-
culated in a similar way by means of the parameter

DM9~l, P!

5
M9@Q9~l, P, z, Z0!; l, z, Z0# 2 M9~P; l0, z, Z0!

M9~P; l0, z, Z0!

5 S1 1 $1 2 @~lyl0! 2 1#2%2 tan2~Ppy2!

1 1 tan2~Ppy2! D1y2

2 1.

(31)

A graphical representation of these merit func-
tions, associated to each chromatic channel, is pre-
sented in Fig. 4 for different values of the selected
order P. The typical achromatic behavior is clearly
shown in this picture, and it is remarkable that a
sensible reduction of the fractional errors is achieved
compared with the free-space FRT device in Fig. 2.

In summary, given a DL—characterized by its fo-
cal length Z0—and an overall scale factor s for the
nput transparency, Eq. ~25! provides the appropriate
istance z between the input transparency and the
L for achieving an achromatized version of the FRT
f any fractional order P. In this situation the ach-
omatic FRT is obtained over a plane located at a
istance d~P; l0, z, Z0! from the DL and scaled by a

factor M9~P; l0, z, Z0! given in Eqs. ~29! and ~28!,
respectively. Note that positive and negative values
42 APPLIED OPTICS y Vol. 39, No. 2 y 10 January 2000
of the distance d~P; l0, z, Z0! correspond to real and
virtual output planes, respectively. Although real
output planes are usually preferred for direct obser-
vation, the use of a simple telecentric achromatic
optical system allows one to deal with virtual planes
as well.

Finally, it is worth mentioning that the design pa-
rameters of the system, namely, the focal length Z0
and the construction scale factor s of the input trans-
parency, can be properly chosen to provide a unity

Fig. 4. Fractional errors affecting each chromatic channel in the
optimal design of the setup presented in Fig. 3: ~a! fractional-
order error, ~b! magnification error. As in Fig. 2, only values P [
~0, 1! are considered for the magnification error because of the
invariance of this function under the change of P by 2 2 P. We
also choose here l0 5 600 nm.
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magnification for a fixed desired fractional order, as
can be deduced from Eqs. ~25!, ~28!, and ~29!.

In Section 4 we present an experimental verifica-
tion of the proposed achromatic fractional Fourier
transformer, and we discuss the performance of the
optical system.

4. Experimental Results

Although our proposal can work with any two-
dimensional signal, in the experimental verification
we choose as input object a conventional one-
dimensional FRT test, namely, a linear encoding of a
real one-dimensional chirplike signal. Thus we use
a binary grating whose spatial frequency is linearly
variable, as is shown in Fig. 5. This object presents
an amplitude transmittance that codifies, basically,
the function

g~r! 5 H(n50

`

gn cos~pnarx
2!, if 2L , rx # 0

0, otherwise
, (32)

a being the so-called chirp rate of the signal, rx the
coordinate in the direction of variation of the one-
dimensional signal, L the finite extent of the object in
his direction, and gn a set of real coefficients. It is

straightforward to show that this class of functions
presents some characteristic FRT’s that are highly
localized around a narrow focusing line. The focus-
ing fractional orders satisfy the relation

tan~P6npy2! 5 61y~na! for all n Þ 0ygn Þ 0.

(33)

In our experiment we generated the input transpar-
ency by coding a binary one-dimensional chirplike
signal with chirp rate a 5 4. We fixed our attention
in the fractional order P21, which, according to Eq.
33!, takes the value P 5 P21 5 1.844. The overall
cale factor for the encoding of the signal onto the

Fig. 5. Input function consisting of a binary grating with linearly
increasing spatial frequency ~chirplike function!.
amplitude transmittance of the input object was s 5
1 mm.

For implementing the achromatic setup in Fig. 3
we used a DL with focal length Z0 5 94.2 mm for a
reference wavelength l0 5 546.1 mm. This DL was
a four-level diffractive element constructed with
multimask-level technology in photoresist and beam
etched over synthetic fused silica. The diffraction
efficiency for the principal focal length is limited to
approximately 70%.

As was mentioned above, the proper choice of the
distance z from the DL to the input transparency
allows us to select the fractional order P of the output
achromatic FRT. For the fractional order of our in-
terest, we chose a value of z 5 2207.66 mm, accord-
ing to Eq. ~25!. In this way the achromatic output

Fig. 6. Achromatic FRT obtained by use of the setup in Fig. 3
under white-light illumination: ~a! gray-scale display of the irra-
diance, ~b! profile of the irradiance along the horizontal direction
or each RGB component of the registered image.
10 January 2000 y Vol. 39, No. 2 y APPLIED OPTICS 243



F
b
r
t

b
m
s
o

F
b
m

p
w
r
a
p
p
F
b
T
s
c
m

h

2

plane was located at a distance d 5 60.91 mm from
the DL, as can be obtained from Eq. ~29!.

The input object was illuminated with a polychro-
matic spherical wave front obtained from a high-
pressure mercury arc lamp, and the irradiance
distribution at the output plane was registered by
use of a color CCD camera. A gray-scale picture of
the result is presented in Fig. 6~a!. The graph in

ig. 6~b! shows the profiles of the irradiance distri-
ution along a horizontal line corresponding to the
ed–green–blue ~RGB! chromatic components of
he CCD.

To appreciate the correction of the chromatic
lurring obtained at the output plane of our achro-
atic system, we present in Figs. 7 and 8 the re-

ults provided by the conventional noncorrected
ptical system in Fig. 1 for the same input object.
44 APPLIED OPTICS y Vol. 39, No. 2 y 10 January 2000
igure 7~a! shows a picture of the irradiance distri-
ution corresponding to the previous FRT when
onochromatic illumination with l 5 l0 is used.

In Fig. 7~b! we show the irradiance profile along the
horizontal direction in Fig. 7~a!. The irradiance

attern obtained at the same observation plane
hen the object is illuminated by the polychromatic

adiation arising from the mercury lamp is shown
s a gray-scale picture in Fig. 8~a!. The irradiance
rofiles corresponding to the RGB chromatic com-
onents of this register are presented in Fig. 8~b!.
rom this picture the chromatic blurring produced
y the diffraction phenomenon can be clearly seen.
he comparison between Figs. 6~b!, 7~b!, and 8~b!
hows that the first result is almost unaffected by
hromatic blurring, confirming the good perfor-
ance of the proposal.
Fig. 7. Monochromatic FRT obtained by the free-space propaga-
tion setup in Fig. 1: ~a! gray-scale register of the irradiance, ~b!

orizontal profile of the image in ~a!.
Fig. 8. Same as in Fig. 7 but obtained with polychromatic illumi-
nation: ~a! gray-scale display of the irradiance, ~b! horizontal
profile of each RGB component of the registered image.
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transform applied to spatial filtering in the Fresnel domain,”
5. Conclusions

We have presented and experimentally verified a
simple design of a fractional Fourier transformer that
operates with polychromatic illumination. The sys-
tem allows for a continuous range of values of the
FRT fractional order P at the output plane by appro-

riate shifting of the input and the output planes.
he optical configuration uses only a single commer-
ially available diffractive optical element, namely, a
inoform DL. The system has been implemented,
nd the experimental results obtained support the
heory. Our proposal can be considered to be the
rst stage of a FRT processor working with white

ight, with potential applications in space-variant
rocessing of color signals with a high signal-to-noise
atio.

This study was funded in part through an agree-
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4. B. Lü, F. Kong, and B. Zhang, “Optical systems expressed in
terms of fractional Fourier transforms,” Opt. Commun. 137,
13–16 ~1997!.

5. D. Dragoman, “Fractional Wigner distribution function,” J.
Opt. Soc. Am. A 13, 474–478 ~1996!.

6. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional
correlation,” Appl. Opt. 34, 303–309 ~1995!.

7. J. Garcı́a, D. Mendlovic, Z. Zalevsky, and A. W. Lohmann,
“Space-variant simultaneous detection of several objects by the
use of multiple anamorphic fractional-Fourier-transform fil-
ters,” Appl. Opt. 35, 3945–3952 ~1996!.

8. S. Granieri, O. Trabocchi, and E. E. Sicre, “Fractional Fourier
Opt. Commun. 119, 275–278 ~1995!.
9. Z. Zalevsky, D. Mendlovic, and J. H. Caulfield, “Localized,

partially space-invariant filtering,” Appl. Opt. 36, 1086–1092
~1997!.

10. A. W. Lohmann, “Image rotation, Wigner rotation, and the
fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–
2186 ~1993!.

11. S. Liu, J. Xu, Y. Zhang, L. Chen, and C. Li, “General optical
implementations of fractional Fourier transforms,” Opt. Lett.
20, 1053–1055 ~1995!.

12. A. W. Lohmann, “A fake zoom lens for fractional Fourier ex-
periments,” Opt. Commun. 115, 437–443 ~1995!.

13. R. G. Dorsch, “Fractional Fourier transformer of variable order
based on a modular lens system,” Appl. Opt. 34, 6016–6020
~1995!.

14. P. Andrés, W. D. Furlan, G. Saavedra, and A. W. Lohmann,
“Variable fractional Fourier processor: a simple implementa-
tion,” J. Opt. Soc. Am. A 14, 853–858 ~1997!.

15. J. Garcı́a, R. G. Dorsch, A. W. Lohmann, C. Ferreira, and Z.
Zalevsky, “Flexible optical implementation of fractional Fou-
rier transform processors. Applications to correlation and fil-
tering,” Opt. Commun. 133, 393–400 ~1997!.

16. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andrés,
“Radon–Wigner display: a compact optical implementation
with a single varifocal lens,” Appl. Opt. 36, 8363–8369
~1997!.

17. G. M. Morris and D. A. Zweig, “White-light Fourier transfor-
mations,” in Optical Signal Processing, J. L. Horner, ed.
~Academic, San Diego, Calif., 1987!, pp. 23–71.

18. J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E.
Tepichin, “Single-zone-plate achromatic Fresnel-transform
setup: pattern tunability,” Opt. Commun. 136, 297–305
~1997!.

19. E. U. Condon, “Immersion of the Fourier transform in a con-
tinuous group of functional transformations,” Proc. Natl. Acad.
Sci. USA 23, 158–164 ~1937!.

20. V. Namias, “The fractional Fourier transform and its applica-
tions to quantum mechanics,” J. Inst. Math. Its Appl. 25, 241–
265 ~1980!.

21. P. Pellat-Finet, “Fresnel diffraction and the fractional-order
Fourier transform,” Opt. Lett. 19, 1388–1390 ~1994!.
10 January 2000 y Vol. 39, No. 2 y APPLIED OPTICS 245


