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Abstract

In this work, we present a new concept of IOL design inspired by the demonstrated proper-

ties of reduced chromatic aberration and extended depth of focus of Fractal zone plates. A

detailed description of a proof of concept IOL is provided. The result was numerically char-

acterized, and fabricated by lathe turning. The prototype was tested in vitro using dedicated

optical system and software. The theoretical Point Spread Function along the optical axis,

computed for several wavelengths, showed that for each wavelength, the IOL produces two

main foci surrounded by numerous secondary foci that partially overlap each other for differ-

ent wavelengths. The result is that both, the near focus and the far focus, have an extended

depth of focus under polychromatic illumination. This theoretical prediction was confirmed

experimentally by means of the Through-Focus Modulation Transfer Function, measured

for different wavelengths.

Introduction

With millions of procedures carried out each year, cataract surgery is one of the most common

operations nowadays, with an increasing rate of growth worldwide. Cataracts frequently start

to develop in people as they get older, producing a loss of vision that can only be corrected by

surgery. In cataract surgery, the crystalline lens that has become cloudy, is removed and

replaced with an intraocular lens (IOL). Many of the IOLs that are currently in the market are

bifocals designed to provide good distance and near vision. Depending on the lens design, sev-

eral addition powers, distribution of energy between the foci, and depth of focus are available

with different models [1]. However, the main shortcoming of current bifocals is their low per-

formance at intermediate distances [2,3]. Therefore, due to the patient’s demand, nowadays

there is a trend to design new IOLs that provide also good intermediate vision, which is impor-

tant for performing several daily tasks (such as, viewing the dashboard in a car, cooking, using

computers and smartphones, etc). This tendency was initiated a few years ago with the intro-

duction of the low-addition bifocal IOLs [3,4], intended to match the lens addition with the

patient’s intermediate focus. Diffractive trifocal IOLs were introduced later with the aim to

offer simultaneously two different additions, one (+3.50D), for near vision and the other

(+1.75D) for intermediate vision [5].
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Following the above mentioned trend, more recently both, refractive, and diffractive,

extended depth of focus (EDOF) designs have been developed with the intention to provide a

“continuous” range of vision, from far to intermediate-near vision. In the first group, the

refractive zones in the lens, having different powers, can be either: rotationally symmetric in

different annuli, like the M-flex multifocal IOL (Rayner, Hove, United Kingdom), or angularly

segmented, like the Lentis M-Plus (Oculentis GmbH, Berlin, Germany), and the SBL-3 IOL

(Lenstec, St. Petersburg, USA). In the second group, two new diffractive multifocal IOLs were

designed; the Mini WELL Ready (SIFI MedTech, Catania, Italy) and the TECNIS Symfony

ZXR00 (Abbott Laboratories, Illinois, USA). These last two models are based on different opti-

cal principles. The Mini WELL Ready presents different amounts of spherical aberration in

two concentric zones in the central part of the lens [6]. The TECNIS Symfony ZXR00 is based

on the combined correction of the spherical and longitudinal chromatic aberrations of the eye

[7]. In truth, as recently reported by Millán and Vega [8], the in vitro EDOF performance of

this IOL is highly wavelength-dependent. On the other hand, a previous study [9] showed that,

even for monochromatic light (545 nm), the EDOF of both diffractive designs is also pupil-

dependent.

In this work we present a conceptually new multifocal IOL design intended to provide good

vision at multiple distances. A proof of concept of a multifocal IOL was constructed following

a hybrid diffractive-refractive design [10] that provides EDOF and low chromatic aberration

simultaneously. These properties are inherited from Fractal zone plates (FZPs) and devil’s

lenses [11–15] which are diffractive lenses that have multiple foci with unique self-replicating

fractal structure around a main focus. Under white light illumination, different wavelengths

come to focus at different distances, but with certain degree of overlapping that results in an

EDOF with reduced chromatic aberration. The fractal design can also be used to modify both

the number and the relative intensities of the foci. FZPs have been successfully employed in

several areas, ranging from spectral-domain optical coherence tomography [16] to terahertz

technology [17]. Here we expand the range of applications of fractal lenses by presenting a

novel design of multifocal IOL developed using the fractal triadic Cantor set. This set is used to

modify the pure spherical profile of a monofocal IOL so that the resulting refractive-diffractive

hybrid design has two main powers, intended for distance and near vision, with EDOF for

intermediate vision. Thus, we called it: Fractal Intraocular Lens (FIOL). The FIOL proof of

concept was numerically evaluated, and tested in vitro on an optical bench.

Intraocular lens design and construction

FZPs are characterized by the distribution of the annular diffractive zones they have, which, in

spite of being periodic along the square root of the radial coordinate, like a Fresnel zone plate

is, it follows the sequence of a given fractal Cantor set. In previous works we have demon-

strated that FZPs can be constructed following any class of Cantor Functions, including polya-

dic Cantor sets [18] and functions with variable lacunarity [19]. As a proof of concept, our first

FIOL design is based on the simplest Cantor set shown in Fig 1a, which is called triadic Cantor

set. The first step in the construction procedure of this set, consists in defining a straight-line

segment of unit length, called initiator (stage S = 0). Next, at stage S = 1, the generator of the set

is created by dividing the segment into 3 equal sub segments of length x = 1/3 and removing

the central one. This procedure is repeated for the subsequent stages, S = 2, 3. . ., on each sub

segment. Then, a change of variables r = b
p

(x) is performed to define the extension of the con-

centric zones in the FIOL, up to a given lens radius b (see Fig 1b). In this way, our design alter-

nates annular zones that follows a fractal distribution along the square of the radial coordinate.

Note that the total number of sub-segments in each stage of the Cantor set is N = 3S; and that
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each one of them, with an extension x = 1/3S, has a corresponding Fresnel zone in the FIOL

fractal zone distribution. The next step in the FIOL design process is to define the phase profile

of these zones in such a way that the first diffraction order of this structure will produce the

near FIOL power. One solution is to employ a conventional kinoform profile in which the fac-

ets of the lens produce a 2π phase shift for the design wavelength λ. These lenses, known as

devil’s lenses, have a focal distance that depends on the number of the above mentioned Fres-

nel zones, through the S parameter as f = b2/2 λ03S [12]. In this way, the FIOL addition (Ad),

i.e.; the difference between the near and far powers results:

Ad ¼
2 l03

S

b2
ð1Þ

However, for our purposes is convenient to introduce one more degree of freedom in the

FIOL design, to cover a wide range of Ads with the same fractal structure. By using the concept

of harmonic diffractive lens [20], this is possible if the phase difference introduced in each

Fig 1. FIOL design. a) Top left: Triadic Cantor set developed up to three steps, S = 3; b) FIOL fractal zones distribution for S = 2, obtained through the coordinate

transformation r = b
p

(x) c) FIOL diffractive profile obtained with K = 3 (see the main text for details).

https://doi.org/10.1371/journal.pone.0200197.g001
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Fresnel zone is φ = 2πK, being K a positive integer number. Additionally, to facilitate the lens

construction, the above mentioned phase differences can be “staked” sequentially from the

periphery to the center avoiding a saw tooth (kinoform) profile. In this way, in each Fresnel

zone, the increment of height corresponding to the desired Ad is Δh = K λ0/ (n–n’), where n
and n’ are the refractive index of the lens material and the surrounding FIOL media (aqueous

humor) respectively. Therefore, the FIOL Ad can be expressed alternatively as:

Ad ¼
2 3SΔhðn � n’Þ

b2
ð2Þ

As reported in Ref [20], lenses constructed in this way have hybrid properties of both

refractive and diffractive lenses.

Returning to Fig 1, if we choose S = 2 in the Fractal structure, and considering a “center far”

FIOL design, the Ad phase profile is incremented in the “blue” rings in Fig 1b). For K = 3 the

final result is shown in Fig 1c).

A FIOL prototype was designed to be constructed in Polymethyl methacrylate (PMMA)

(refractive index n = 1.493 at the design wavelength λ0 = 555x10-9m); with dioptric power 19.5

D. The radii of curvature for the front and back surfaces were 12.42x10-3m, and 22.89x10-3m

respectively. The proof of concept FIOL was conceived with the fractal profile in the anterior

surface of the lens providing an Ad = +3.5 D. This value was obtained with: S = 2, K = 3, and

b = 2.92x10-3m using Eq (1). See Fig 2a.

The multifocal FIOL was manufactured by a lathe-milling process (Optoform40, Sterling

Ultra Precision, Largo FL, USA), similar to that for standard monofocal IOLs, but without the

polishing step. Differences between the theoretical design and the constructed FIOL profiles

were lower than 0.1 mm as measured with an optical non-contact profilometer (PLμ 2300,

SENSOFAR, Terrassa, Spain). An interferometric image (PMTF, Lambda-X, Nivelles, Bel-

gium) of the manufactured FIOL is shown in Fig 2b. The haptic for the prototype was chosen

as shown in the figure, simply to facilitate the lens handling during its assessment (the design

of the lens haptic has no influence on its optical properties and it was beyond the scope of this

work).

Fig 2. FIOL proof of concept. a) Theoretical profiles of the anterior and posterior FIOL surfaces (green line). The red line is the diffractive profile of the FIOL,

designed with S = 2 and K = 3 (magnified X5 in the vertical direction in order to show the relative heights of the diffractive steps); this profile was superimposed

to a pure spherical profile of a monofocal IOL radius r = 12.42 mm (blue line). b) Interferometric image of the constructed lens.

https://doi.org/10.1371/journal.pone.0200197.g002

Fractal-structured multifocal intraocular lens

PLOS ONE | https://doi.org/10.1371/journal.pone.0200197 July 9, 2018 4 / 11

https://doi.org/10.1371/journal.pone.0200197.g002
https://doi.org/10.1371/journal.pone.0200197


Numerical validation of the FIOL design

For the theoretical characterization of the lens, wavefront propagation and Fourier analysis

were performed numerically using Fresnel diffraction theory. In the simulations, it is assumed

that the lens is immersed in aqueous humor (refractive index: n’ = 1.336). To assess its focusing

properties, the Point Spread Function (PSF) provided by the FIOL, was computed at different

axial positions for different pupil diameters and wavelengths.

The numerical axial PSFs provided by the designed FIOL for different wavelengths (λ) and

three different pupil diameters (F) are shown in Fig 3 in comparison with the irradiances of a

monofocal IOL with the same dioptric power 19.5 D and the same shape factor. As can be

seen, for each wavelength the FIOL produces two main foci surrounded by numerous second-

ary foci that partially overlap each other for different wavelengths. The result is that both, the

near and far foci, have an EDOF under polychromatic illumination.

Additionally, another objective metric, highly correlated with the visual acuity: the theoreti-

cal visual Strehl ratio computed in frequency domain (MTF method) [21], or simply: the

Visual MTF (VMTF), was computed for the two main foci (far and near), with different pupil

sizes (see Fig 4). As can be seen, despite of being pupil-dependent, the FIOL enhanced the far

vision, especially with small pupil sizes.

Experimental results

The optical performance of the FIOL was experimentally tested in vitro with a custom made

image forming system that allows the measurement of the polychromatic TF-MTF. A sche-

matic illustration of the experimental system is shown in Fig 5. This setup is similar to one pre-

sented previously [22] containing an ISO eye model [23], except for the artificial cornea which

has been removed to obtain a better through the focus resolution. The illumination system

consists of a white LED (LuxeonTM, V Portable, Alberta, Canada). A band-pass filter was

placed behind it to assess the FIOL performance with different wavelengths. The beam was col-

limated by the lens L1 (focal length: 50 mm). The test object, a grating target of frequency ν = 5

lp mm-1, was mounted on a stepping motorized translation stage (travel range 300 mm, accu-

racy: ±5 μm). The Badal lens L2 was an achromatic lens of focal length: 160 mm. The FIOL

prototype was placed in different holders with different pupil sizes and immersed in a wet cell

with saline solution. An 8-bit CMOS camera (EO-5012C; Edmund Optics, Illinois, USA);

Fig 3. Theoretical axial PSFs provided by a FIOL. Results for a lens with distance power 19.5 D (Ad = +3,5D) with different pupil diameters (F) and three

wavelengths: λ = 490 nm (blue line); λ = 555 nm (green line), and λ = 630 nm (red line). In each plot, the dotted lines are the PSFs (λ = 555 nm) of a monofocal 19.5 D

IOL.

https://doi.org/10.1371/journal.pone.0200197.g003

Fractal-structured multifocal intraocular lens

PLOS ONE | https://doi.org/10.1371/journal.pone.0200197 July 9, 2018 5 / 11

https://en.wikipedia.org/wiki/Illinois
https://doi.org/10.1371/journal.pone.0200197.g003
https://doi.org/10.1371/journal.pone.0200197


Fig 4. Theoretical visual MTF for the different pupil sizes. These results were computed from the Fourier transform of the monochromatic PSF (the MTF) for the

design wavelength λ0 = 555 nm, weighted by the neural contrast sensitivity function [21].

https://doi.org/10.1371/journal.pone.0200197.g004

Fig 5. Optical bench for in-vitro testing. The object test was mounted on a linear translation stage. As the FIOL to be tested was placed at the image focal plane of L2

we called it: Badal lens. This configuration guaranteed that the angle subtended by the test object, and consequently the spatial frequency assessed in the TF-MTF, was

constant for all vergences and equal to 14 cpd. The retinal image was recorded with an X5 microscope and a CMOS camera.

https://doi.org/10.1371/journal.pone.0200197.g005
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attached to an X5 microscope (focused on the far focal plane of the FIOL) was used to capture

the image of object for different vergences. The spatial frequency of the grating corresponds to

an object of size 20/40 (0.3 logMAR) in a visual acuity (VA) chart, and is constant at all object

vergences.

The object plane was displaced along the optical axis to generate vergences, ranging from

-1D to +6D in steps of 0.04D. Vergences were measured from the object focal plane of L2,

being positive for displacements towards L2, and negative for displacements in the opposite

direction. For each position of the object, the retinal image was stored and analyzed in a totally

automatic procedure. The movements of the translation stage and the processing of the retinal

images were controlled by custom software programmed in LabView. The MTF for each object

vergence was obtained from the calculation of the loss of contrast of the image of the test

object. A detailed description of the setup performance can be found elsewhere [22].

Fig 6 shows the experimental TF-MTF, measured for an aperture of 4.5 mm and three dif-

ferent wavelengths: 490 nm, 560 nm, and 630 nm.

As predicted by the theoretical axial PSF (Fig 3) the TF-MTF curve presents several peaks

for the different wavelengths distributed along the whole range of vision. Finally, for evaluating

the polychromatic imaging in the eye, these monochromatic (RGB) MTFs were combined

numerically, weighted by the spectral sensitivity function of the human eye under daylight

conditions V (λ) [24], the spectral content of the illumination source, and the FIOL material

transmission. The result, represented by the black line represents in Fig 6., is a compound

focal volume with EDOF.

Discussion and conclusions

In the present study, a new hybrid diffractive/refractive multifocal IOL was presented and eval-

uated in-vitro. The theoretical design of this lens is based on a general method [10] that

includes diffractive profiles having different aperiodic distributions of annular zones. Here, a

proof of concept was developed using the triadic Cantor set fractal distribution. In our design,

we have found that the Cantor function with S = 2 and with K = 3, provides the simplest multi-

focal structure for a FIOL, in which the refractive and diffractive properties of the lens are opti-

mized. In fact, as shown in Ref. [11], as S becomes larger in a FZP, an increasing number of

subsidiary (diffractive) foci are generated, which means that, in designs with S = 3, the diffrac-

tive effects would become more predominant over the refractive ones, which would result in a

loss of light efficiency compared to designs with S = 2.

The proposed lens (FIOL) is a center-distance EDOF design that provides a clear domi-

nance of the far focus with different pupil sizes. In fact, the theoretical results presented in Fig

4, show that despite of some degree of pupil-dependence, the highest value of MTF was

achieved for the far focus for almost all considered pupil diameters. Opposite results, i.e.; lenses

with a clear dominance of the near focus, were obtained in a preliminary study [25] (in Span-

ish). In that work we investigated the performance of a design in which the zones were inter-

changed with respect to those shown in Fig 1.

The polychromatic behavior of the lens was assessed both theoretically, and experimentally

in a dedicated optical setup. We have shown that, thanks to its hybrid nature, the FIOL has

two principal foci, intended to provide far and near vision, and a series of secondary foci

around them, that give an EDOF to each main focus, improving intermediate vision. More-

over, thanks to these secondary foci, the FIOL has a reduced chromatic aberration because

under polychromatic illumination there is a partial overlapping between them for the different

wavelengths (see Fig 3). In the analysis of the experimental results reported in Fig 6. It should

be taken into account that both, the cutoff frequency, and the values of the MTF obtained in

Fractal-structured multifocal intraocular lens
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the test bench for the FIOL without cornea are lower than the cutoff frequency provided by an

artificial eye with the cornea lens and the FIOL [25]. Futhermore, because of the hybrid nature

of the far and near foci, and based on the results recently reported by Nakajima et al. [26] for

monofocal refractive IOLs, it can be expected that the visual performance of eyes implanted

with FIOLs will be similar to that of phakic eyes when some extent of higher-order aberration

exists. At this point, it is important to note that this behavior is different from other diffractive

multifocal IOLs, which have elevated levels of chromatic aberration of opposite sign [8, 27].

We want to emphasize that the design parameters of the FIOL allow customization. In fact,

a FIOL can be designed to match the patient’s Ad, and visual needs; for instance: ratio between

Fig 6. Experimental TF-MTF. FIOL’s TF-MTF for 14 cpd obtained in the optical bench (Fig 6) with 4.5 mm pupil for different wavelengths. Zero defocus corresponds

to far vision.

https://doi.org/10.1371/journal.pone.0200197.g006
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the near and far intensities can be modified by the lacunarity in the Cantor set (see Fig. 3

Ref. [19]). This parameter also allows controlling the number of foci of the FIOL. Therefore,

the flexibility in the FIOL design can be considered an advantage over other multifocal IOL

models. Moreover, other fractal profiles can be used to address other particular needs.

Some limitations of this study will be addressed in the future. Further studies should involve

other in vitro optical quality measurements of the FIOL, such as: the use of other (foldable)

materials for the lens construction, and the effect on the merit functions (PSF, MTF, and

TF-MTF) of the FIOL decentration and tilt [28]. Moreover, improvements in the reported

results could be expected with different aspheric designs on the base lens intended to the cor-

rection of spherical aberration [29]. Finally, a clinical evaluation of patients who have had

implantation of the FIOL is required to determine the visual impact of our design on the

patient’s quality of vision, particularly, to assess how the multifocal action of the lens affects

the contrast sensitivity at several distances.

Supporting information

S1 Dataset. Axial PSFs data, computed at 0.03D intervals as represented in Fig 3.

(XLSX)
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