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Abstract: A radial Walsh filter is a phase binary diffractive optical element characterized by 
a set of concentric rings that take the phase values 0 or π, corresponding to the values + 1 or 
−1 of a given radial Walsh function. Therefore, a Walsh filter can be re-interpreted as an 
aperiodic multifocal zone plate, capable to produce images of multiple planes simultaneously 
in a single output plane of an image forming system. In this paper, we experimentally 
demonstrate for the first time the focusing capabilities of these structures. Additionally, we 
report the first achievement of images of multiple-plane objects in a single image plane with 
these aperiodic diffractive lenses. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Fresnel zone plates (FZPs) are essential for focusing and imaging in many scientific and 
technological areas, as for example in THz [1] or X-Ray [2] applications. As it is well-known, 
conventional FZPs consist of alternating transparent-opaque circular rings (or alternating 0 
and π phase shift ring zones) whose radii are proportional to the square root of the natural 
numbers [3]. Therefore, as these lenses have rotational symmetry, their complex 
transmittance function can be, in general, formulated in terms of a one-dimensional compact-
supported periodic function q(ς), followed by a change of coordinates ς = (r/a)2, where r is 
the radial coordinate and a the radius of the lens. In order to extend the range of applications 
of conventional FZPs several non-linear transformations of the phase of periodic zone plates 
were proposed, mainly to obtain multifocal zone plates [4–6]. On the other hand, several 
diffractive lenses characterized by non-periodic or aperiodic generators, q(ς) were also 
proposed over the last ten years. For instance, Fractal Zone Plates [7–9] (characterized by its 
fractal structure along the squared radial coordinate ς) demonstrated self-similar focusing 
properties [7] and extended depth of field imaging [8]. Other interesting aperiodic functions 
are the Fibonacci and Thue-Morse sequences [10]. Fibonacci zone plates are intrinsically 
bifocals, being the ratio of the two main focal distances defined by the golden ratio [11]. 
Thue-Morse zone plates combine the properties of fractal and Fibonacci zone plates 
producing two main self-similar foci along the optical axis with extended depth of focus [12]. 

Walsh functions are a set piecewise constant functions satisfying orthogonality conditions 
over the unit interval [13]. These functions take values + 1 and −1 on sub-intervals defined by 
dyadic fractions, being the number of zero crossings determined by the order of the Walsh 
function. Walsh functions are of great practical interest in many fields, especially in 
communications [14] and digital signal processing [15]. Derived from Walsh functions in 
polar coordinates, radial Walsh filters (structures with rotational symmetry) have been 
proposed for solving problems of optical science. For example, these filters have been proved 
to be useful in adaptive optics and apodization problems [16, 17], and for tailoring the 
resolution of microscopic systems [18]. Earlier studies on radial Walsh filters have shown that 
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the corresponding axial and transverse intensity distributions in the far-field diffraction 
patterns present self-similar properties [19, 20]. 

In this work, radial Walsh filters are re-interpreted as members of the above mentioned 
aperiodic zone plates family. In this way, a new formulation of a Walsh Zone Plate (WZP) is 
obtained by replacing the generating function q(ς), by a given Walsh function with a fixed 
number of zones. To evaluate the focusing and imaging properties of the WZPs two different 
optical setups were implemented. One of them uses a spatial light modulator to obtain the 
axial irradiance provided by quadrifocal WZP and to perform the first image formation 
experiment with phase WZPs. In the other one, we demonstrate that amplitude WZPs are 
capable of achieving images of multiple-plane object in a single image plane. 

2. Walsh zone plates design and focusing properties 

Let us start revising the concept of radial Walsh filters [19, 20]. It was based on the Walsh 
functions represented in Fig. 1. The first step in the construction procedure consists of 
representing the binary decomposition of an integer number k in the form: 
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where ki is the i-th bit, 0 or 1, of the binary numeral for k and m is the lowest integer number 
for which 2m > k, i.e., 2m is the power of 2 that exceeds k. Based on this decomposition, the 
corresponding Walsh function of order k, qk(ς), can be defined in the interval ς ∈ [0,1] as: 
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In Fig. 1 we have represented the Walsh functions, qk(ς), up to order k = 64. The yellow 
bars correspond to the value + 1 while the red bars correspond to the value ‒1. Note that the 
number of zero crossings is determined by the order of the Walsh function k. 

 

Fig. 1. Graphical representation of the Walsh functions up to order k = 64. The yellow bars 
correspond to the value + 1 while the red bars correspond to the value ‒1. The blue arrow 
indicates the order k = 22, which has been used to design the WZP shown in Fig. 2. 
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From a particular Walsh function, qk(ς), the corresponding radial Walsh filter can be 
generated by performing a change of variable ς = (r/a)2 and by rotating the transformed 
Walsh function around ones of its extremes. The result is a pure phase diffractive optical 
element having a radial coordinate r and radius a. In this way, we can re-interpret a radial 
Walsh filter of order k as a binary phase aperiodic zone plate whose pupil function is defined 
by the Walsh function, qk(ς), expressed in the normalized squared radial coordinate ς. 

Figure 2(a) shows a WZP of order k = 22 characterized by a set of concentric zones that 
take the phase values 0 (yellow rings) or π (red rings), corresponding to transmittance values 
+ 1 or ‒1, respectively. For comparison, a conventional phase binary zone plate with the same 
resolution (same width of the outermost zone) is also represented in the same figure. Note that 
this FZP can be obtained using the same procedure but by replacing the aperiodic Walsh 
function with a periodic one (i.e., a sequence of alternating zones in opposite phase). In other 
words, a WZP can be understood as a binary FZP, where the positions of some zones of 
equal-area have been interchanged. 

 

Fig. 2. (a) WZP generated from the 1-D function q22(ς) shown in Fig. 1 and a FZP with the 
same number of Fresnel zones. Yellow and red rings correspond to a phase 0 ( + 1 
transmittance value) and π (‒1 transmittance value), respectively. (b) Numerically computed 
axial irradiance produced by both lenses shown against the reduced axial coordinate u. 

The focusing properties of the WZPs can be evaluated by computing the axial irradiance 
generated by these aperiodic lenses under monochromatic plane-wave illumination. To this 
end, we have employed the mathematical basis provided by the McCutchen theorem [21], 
which relates (via 1-D Fourier transform) the axial irradiance distribution with certain 
representations of the pupil function [22,23]. In our case, the axial irradiance function is given 
by 
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where u = a2/2λz is the reduced axial coordinate, z is the axial distance from the pupil plane, 
and λ is the wavelength of the light. Thus, the axial irradiance can be defined in terms of the 
Fourier transform of the mapped pupil function q(ς). 

By using Eq. (4) we have computed the axial irradiance (corresponding to the first-order 
diffraction foci) provided by both: a WZP of order k = 22, and by a FZP with the same 
number of Fresnel zones, for comparison. The result shown in Fig. 2(b) proves that the 
reordering of the phase zones according to the aperiodic Walsh function produces a multiple 
splitting of the first-order focus of the corresponding FZP (see the green line in Fig. 2) 
generating, in our case, four foci along the axial coordinate (see the blue line in Fig. 2). 
Therefore, Walsh functions can be implemented in the design of novel multifocal diffractive 
lenses with multi-imaging capabilities. Due to the binary nature of the diffraction structure, 
other foci corresponding to positive high diffraction orders are also generated (not shown in 
Fig. 2 because of the represented range of axial coordinate), so these four foci are replicated 
along the reduced axial coordinate u with a period corresponding to the number of zones, N. 

We have also computed in Fig. 3 the axial irradiance of WZPs for different orders, k. For 
comparison, the normalized reduced axial coordinate, u´ = u/N, has been considered, focusing 
our attention around the first diffraction order. The gray-code bars give the normalized axial 
irradiance, I, of theses diffractive aperiodic lenses, being I = 1 in the white regions and I = 0 
in the black regions. First, we can easily identify the four foci shown in Fig. 2(b) in the 
irradiance bar in Fig. 3 for k = 22. Note that the four focal distances can be modulated with 
the parameter k. It is also shown that this quadrifocal configuration is preserved for different 
orders k, although more subsidiary foci appear for large k values. It can also be seen that the 
four foci collapse to a single focus for k = 1, 3, 7, 15, 31, 63, … = 2n-1 with n = 1, 2, 3, 
4…since the structure of the corresponding WZP matches with a conventional periodic zone 
plate. 

 

Fig. 3. The grey-code bars represent the normalized axial irradiances, I, for WZPs of different 
orders k, being I = 1 in the white regions and I = 0 in the black regions. The reduced axial 
coordinate has been normalized to u´ = u/N, where N is the number of zones. The red, green 
and blue boxes show the same structure at different scales. 

On the other hand, the irradiances produced by WZPs under monochromatic plane-wave 
illumination present self-similar properties. For instance, the irradiances shown in the red box 
for 8 ≤ k ≤ 15 are replicated on a smaller scale in the two green boxes for 16 ≤ k ≤ 31 and 
even on smaller scale in the four blue boxes for 32 ≤ k ≤ 63. The property of self-similarity in 
axial intensity distributions of radial Walsh filters was also reported in the far field diffraction 
patterns [20]. We have extended this property to the axial irradiances provided by WZPs 
working as aperiodic diffractive lenses. 
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3. Experimental results: imaging properties 

We have experimentally tested the focusing and multi-imaging capabilities of aperiodic 
WZPs and compared their performance against a conventional FZP with the same number of 
Fresnel zones. A schematic illustration of the experimental setup is shown in Fig. 4(a). The 
diffractive lenses under study were implemented on a Liquid Crystal in a Silicon SLM 
(Holoeye PLUTO with 8-bit gray-level corresponding to 28 phase levels, a pixel size of 8 µm, 
and a resolution equal to 1920 × 1080 pixels). The SLM operating in phase-only modulation 
mode was calibrated for a 2π phase shift at λ = 633 nm. In order to avoid the noise originated 
from the specular reflection (zero order diffraction) and from the higher diffraction orders due 
to the pixelated structure of the SLM, a 1D blazed grating acting as a linear phase carrier was 
also modulated on the SLM in addition to the WZP phase profile. This linear phase was 
compensated by tilting the SLM and by using a pin-hole (PH) to filter all diffraction orders 
except the first one into the focal plane of lens L2. In this way, a rescaled image of the 
diffractive lens was achieved at the L3 lens focal plane (exit pupil). 

 

Fig. 4. Experimental setup for the assessment of (a) the multi-focusing properties of WZPs and 
(b) the multi-imaging capabilities by replacing the laser light source by a monochromatic LED 
illuminating a binary object (a smiley face). 

A collimated beam from a He-Ne laser (λ = 633nm) was directed onto the SLM. The 
diffracted field was captured and registered with a microscope (4x Zeiss Plan-Apochromat 
objective) attached to a CCD camera (8 bit gray-level with a pixel pitch of 3.75 µm and 1280 
× 960 pixels). The microscope and the CCD were mounted on a translation stage (Thorlabs 
LTS 300 with a range of 300 mm and a precision of 5µm) along the optical axis. The 
experimental irradiances obtained for a WZP of order k = 22 and radius a = 1.74 mm is 
shown in Fig. 5(a). A profile of the measured axial irradiance is represented in Fig. 5(b), 
together with the results numerically computed using Eq. (4). A very good agreement 
between theory and experiment can be observed and the four foci marked with the characters 
[A-D] are clearly visible. The corresponding focal distances were fA = 114.9 mm, fB = 124.8 
mm, fC = 188.2 mm, and fD = 211.7 mm. Note in both cases, the heights of the different foci 
peaks and the transverse resolution at each focus are different. To quantify these differences 
we have computed the ratio of the full width at half-maximum (FWHM) of the axial 
irradiance peaks provided by the WZP and the corresponding FZP with the same number of 
zones. The results are shown in Table 1. 
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Fig. 5. (a) Experimental transverse intensity distribution produced by a WZP of order k = 22. 
(b) Profile of Fig. 5(a) (blue line) showing the axial irradiance distribution. The theoretical 
values of the irradiance are shown in green line for comparison. In both cases, the values are 
normalized to the peak intensity. 

Table 1. Ratios of the full width at half-maximum (FWHM) of the axial irradiance peaks 
provided by the WZP and the corresponding FZP with the same number of zones. A, B, 

C, and D correspond to the peaks shown in Fig. 5. 

 WZP A/ FZP WZP B/ FZP WZP C/ FZP WZP D/ FZP 
FWHM ratios 0.84 0.92 1.23 1.39 

In order to verify the multi-imaging capabilities of WZPs we have modified the previous 
experimental setup as shown in Fig. 4(b). We replaced the He-Ne laser source by a binary 
object (a smiley face) located at the focal plane of the achromatic Badal lens, L1. The 
illumination system consisted of a red collimated LED (Mounted High-Power LED, red 625 
nm, 1000 mA) and a bandpass filter (λ = 632.8 nm ± 0.6 nm). The multiple images produced 
by the aperiodic diffractive lens were captured with same image registration system (the CCD 
camera mounted on the translation stage). Figure 6 shows the images provided by the 
multifocal WZP of order k = 22 and the monofocal FZP shown in Fig. 2(a). The experimental 
results were reproduced without any post-processing. The registered images were obtained at 
each focal plane that can be tuned by a proper selection of the parameter k. As can be seen, 
four clear images were captured at the focal planes [A-D] depicted in Fig. 5(b), demonstrating 
in this way the multiple-plane imaging capabilities of the WZP as quadrifocal diffractive lens. 
For comparison, the four images obtained through WZP and the one with FZP are shown in 
the same figure. The image provided by the FZP has higher contrast than those provided by 
the WZP because all the images are coaxial and therefore in each case three out-of-focus 
images are superimposed to the in-focus image. 
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Fig. 6. (6.15 Mb) Images obtained with the WZP of order k = 22 and with the equivalent 
periodic zone plate of the same resolution (see Visualization 1). Five different location, z, were 
considered corresponding to the four image planes of the quadrifocal WZP (first, second, 
fourth and fifth rows) and the image plane of the monofocal FZP (third row). 

We have also tested the performance of amplitude WZPs as multifocal lenses by imaging 
objects located at different distances from the lens on a single image plane. For this purpose, 
we have implemented the experimental setup shown in Fig. 7(a). A WZP of order k = 22 and 
radius a = 3 mm (but in this case with opaque and transparent areas) was printed on a graphic 
film (standard polyester film) using a photoplotter with 2400 lpi resolution. The A binary 
amplitude object (our group logo: DiOG) was placed in front of a Badal Lens (LB), to 
generate different object vergences. The WZP was located at the focal plane of LB in order to 
obtain the four images of the object at the focal plane of the lens LF all with the same size. 
The four images provided by the first diffraction order of the WZP at different vergences are 
shown in Fig. 7(b). 
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Fig. 7. (a) Experimental setup used to obtain images of different axially displaced objects at 
the same image plane. (b) Experimental results obtained with an amplitude WZP of order k = 
22. The position of the object is given in diopters. 

4. Conclusions 

In this work we have experimentally demonstrated, for the first time to our knowledge, the 
multiple-plane imaging and focusing capability of WZPs. First, we have shown that a WZP 
naturally produces multiple foci along the axial coordinate. A very good agreement between 
the experimental and the theoretical results has been obtained. Then, the images produced by 
these kind of filters working as quadrifocal diffractive lenses are reported. As the axial 
separation between the foci can be tuned by a proper selection of the Walsh order, k, these 
lenses offer a versatile alternative that can be advantageously used in several potential 
applications, as for instance, multiple plane optical trapping [24], X-ray microscopy [25], and 
multifocal contact and intraocular lenses [26–28]. 
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