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Abstract
The scattering of particles in fractal superlattices has been analyzed by means of the transfer
matrix method. The fractal superlattice consists of alternating layers of semiconductor materials
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following the rule of a Cantor set. This problem can be represented by a model of quantum
particles scattering in piecewise constant potential wells. Fractal properties of the reflection
coefficient versus the particle energy curves are examined comparatively to the curves when
using the corresponding periodic potentials. The degree of self-similarity of the output variables
has been quantified by means of the correlation function.
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1. INTRODUCTION

Nowadays, it is possible to deposit very thin alter-
nating layers (of a hundred of atoms thick) of semi-
conductor materials with different energy band gaps
over a substrate. This can be done, for example, by
using techniques such as: molecular beam epitaxy
or metalorganic chemical vapor deposition.1,2 The
result is a heterostructure whose physical properties
are ruled by quantum effects which play a major
role as layers become thinner. A current appli-
cation of these heteostructures is the “Quantum
Superlattices”.3 There are many derived applica-
tions of supperlattices, such as, the double well het-
erostructures in semiconductor diode lasers which
are present in the majority of compact disc players,
laser printers, fiber optic communication links4 and
many other applications.1,2

As a first approximation to the modeling of
semiconductor superlattices in the absence of an
external electric field, a quasi-one-dimensional sys-
tem of rectangular quantum wells separated by
potential barriers can be considered. The solu-
tion for the scattering by multiple quantum wells
can be obtained with the transfer matrix method5

involving the straightforward multiplication of 2×2
matrices.6–8 This method allows us to introduce a
numerical procedure based on a piecewise constant
approximation for a general potential,9 the analy-
sis of defects on otherwise periodic potentials and
even the consideration of more complicated forms,
such as fractal potentials.10–12 This method uses an
effective mass for the electrons which accounts for
the external forces applied to the electron in the
quantum well heteroestructure. Here, the electrons
are not considered as free particles since they are
under the influence of other atoms. Fractals consti-
tute geometric objects that are homogeneous and
self-similar.13 Beyond the fact that fractal struc-
tures are largely spread in nature and have been
found to be very useful to describe and understand
several phenomena, they have also been found on
the grounds of multiple technologies.

The pioneer models of superlattices were crys-
talline and periodic. Nowadays, it is feasible to
build nonperiodic superlattices that are based on
amorphous semiconductors.14 A common example
of a crystalline superlattice consists of several lay-
ers of gallium arsenide (GaAs) placed in between
aluminium gallium arsenide (AlxGa1−xAs) ones
(Axel and Terauchi15). A typical amorphous device
can be made by alternating layers of amorphous
germanium (a-Ge) and amorphous silicon (a-Si)
deposited on a silicon substrate, as the polyadic
Cantor superlattices, experimentally obtained by
Järrendahl et al.,16 in which each layer is 1.4 nm
thick. Numerical results obtained by authors in
Ref. 16 indicate that the neglect of imperfec-
tions, such as, small layer thickness fluctuations
and interface mixing, mainly influence the peak
intensity, but the peak positions are much less
affected. Therefore, a good agreement between the-
oretical simulation and experiments can be achieved
which encourages the possibility for the theoretical
design of new microelectronic devices in practical
applications.12

The scattering properties of triadic Cantor Set
fractal potentials have been studied by numeri-
cally implementing a simple transfer matrix method
and by a comparison with the equivalent periodic
structure potential in Ref. 17. In this case, the
segments were taken to be energy barriers. Also
for this model, approximate analytical formulae
were obtained for the tunneling curves in fractal
superlattices of quantum wells and compared to
numerical results showing good accuracy.18,19 These
results are relevant for the development of band-
pass energy filters for electrons, semiconductor solar
cells and solid state radiation sources of high fre-
quency (∼ 1 THz).

In line with previous works,20 we compare here
the scattering properties of particles by generalized
periodic potentials and by fractal ones in the form
of a generalized Cantor set (GCS) where segments
represent wells. The consequences of this fractal
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property of the potential have been explored in the
reflection coefficient. The degree of self-similarity of
the output variables has been quantified by means
of the correlation function.

The outline of the paper is the following. In Sec. 2
we formally present the statement of the problem,
the features of the generalized fractal potential and
the methodology for the solution. In Sec. 3 results
and discussions are shown. We make special empha-
sis in the discussion of the self-similarity properties
shown by the reflection coefficient in comparison to
the case of using the equivalent periodic potential.
Finally in Sec. 4 some conclusions are drawn.

2. PRESENTATION OF THE
PROBLEM

2.1. Transfer Matrix Method

The scattering of particles in one-dimensional
potentials is driven by the one-dimensional time-
independent Schrödinger equation21–23:

− �
2

2m
∂2ψ(x)
∂x2

+ V (x)ψ(x) = Eψ(x), (1)

where ψ(x), m and E are the particle wave function,
mass and energy, respectively; � is the Planck’s con-
stant and V (x) is the quasi-periodic potential which
can be represented by a piecewise constant function.

The wavefunction ψi on the region where the
potential constant value is Vi, is the addition of two
plane waves, ψi(x) = ψ+

i (x) + ψ−
i (x), given by
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i (x) = A±

i e
±jkix, ki =

1
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√
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where j =
√−1, ki is the local particle momentum,

and A±
i are integration constants to be determined

by applying the standard boundary conditions at
the interfaces between succesive wells. In the paper,
a distribution of potential wells of the same depth
is considered, so the potential Vi = −V in the wells
and Vi = 0 outside them.

The solution of Eq. (1) for a distribution of N
constant potential wells is obtained by means of the
transfer matrix method,7,9 yielding:(
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(5)

where di is the width of the ith potential well.
The reflection coefficient R of the scattering of a

quantum particle, incoming from the left, with the
N -well potential is determined by the coefficients of
the matrix M ,(

A+
0

A−
0

)
=

(
M11 M12

M21 M22

)(
A+

N+1

0

)
, (6)

where terms A±
0 represent the integration constants

of the plane wave functions, N identifies the Nth
well, and no backward particle can be found on the
right side of the potential, so A+

N−1 = 0. The matrix
M is obtained by applying the standard boundary
conditions at the interface, that is, the continuity of
both the wave function and its derivative. Finally,
the reflection coefficient is expressed by

R =
|A−

0 |2
|A+

0 |2
=

|M21|2
|M11|2 , (7)

since kN+1 = k0.

2.2. Generalized Cantor Set
Potentials

Figure 1 shows a schematic representation of the
fractal Cantor set along with the corresponding
periodic representation. The fractal Cantor set is
obtained by means of an iterative algorithm. Let
us comment first the case of the triadic Cantor set
(upper right part of Fig. 1). The first step (stage

Fig. 1 Fractal Generalized Cantor Set and the correspond-
ing finite periodic distributions.
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S = 0) is to take a segment of unit length. The
next one (stage S = 1) is to divide the segment
into three equal parts of length 1/3 and remove the
central one. In general, at the stage S, there are 2S

segments of length 3−S with 2S−1 gaps in between.
The stage S + 1 is obtained by dividing each of
these segments into three parts of length 3−S−1

and removing the central ones. The Sth stage Can-
tor set pre-fractal is interpreted as a quasi-periodic
distribution of segments which can be obtained by
removing some central segments in a finite periodic
distribution. The periodic distribution at stage S
has (3S − 1)/2 + 1 segments wells of length 3−S ,
separated by gaps of the same length, so that the
period of this finite structure is Λ = 2 × 3−S .

Following the above iterative process we can gen-
eralize the fractal Cantor set beyond the triadic one.
The generalized structure consists of a sequence in
which the ratio between lengths of the equivalent
period (Λ) and of the segment (a) is a positive
integer number ε = Λ/a. We call this parame-
ter as generalization parameter of the Cantor set.
In accordance with the above definition, a conven-
tional (triadic) Cantor set20 is a particular case with
ε = 2. Thus the GCS can be obtained by dividing
the segments into (ε+1) parts and removing (ε−1)
central segments for each Cantor set characterized
by the parameter ε. This operation will yield a fam-
ily of generalized Cantor sets with equivalent peri-
ods: Λ = ε(ε + 1)−S .

The scattering problem for both the quasi-
periodic Cantor sets and the finite periodic poten-
tial can be solved by the transfer matrix theory.17

In this work we consider quantum wells distributed
in the black segments of the generalized distribu-
tions shown in Fig. 1. It is standard to normalize
both the energy and the potential of the quantum
wells by the length of the segment a = (ε + 1)SL,
where ε represents the generalized set, S the stage
in the set and L is the unit segment at S = 0. The
resulting non-dimensional variables are:

φ = a

√
2mE
�

, φv = a

√
2mV
�

. (8)

3. RESULTS AND DISCUSSIONS

Figures 2–4 show the reflection coefficient, R, for
the finite periodic potential and the GCS poten-
tial, respectively, in the region that includes the
first band gap of the infinite periodic one. Three
cases are represented, that is, for three values
of the generalization parameter of the Cantor

Fig. 2 Scattering reflection coefficient for the finite peri-
odic and GCS potentials of stages S = 2 and S = 3 for the
generalization parameter ε = 2.

Fig. 3 Scattering reflection coefficient for the finite peri-
odic and GCS potentials of stages S = 2 and S = 3 for the
generalization parameter ε = 3.

set: ε = 2, 3 and 4. The potential well depth
was set as φv = 0.7 for all calculations. Mak-
ing use of the Kronig-Penney model,24 the band
gap can be numerically calculated. The ranges
are: [1.437, 1.542], [0.891, 1.033] and [0.613, 0.778]
for ε = 2, 3, and 4, respectively. In this energy range,
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Fig. 4 Scattering reflection coefficient for the finite peri-
odic and GCS potentials of stages S = 2 and S = 3 for the
generalization parameter ε = 4.

a Bloch wavefunction does not propagate in an infi-
nite periodic potential and, therefore, the trans-
mission coefficient ideally vanishes (R = 1); only
evanescent wavefunctions characterized by a com-
plex wavevector, k, are solution of the Schrödinger
equation. For this reason, when the number of peri-
ods is finite, the quantum particle may pass through
the potential distribution by the tunneling effect.

For finite periodic potentials (left panels in
Figs. 2–4) it can be noticed that reflection coeffi-
cients approach unity as the number of periods in
the spatial interval increase (going from S = 2 to
S = 3), thus illustrating the process of appearance
of the bandgap of the infinite periodic structure.
The value of R = 1 is never reached in the finite
periodic structure.

In right panels of Figs. 2–4, the fractal cases
for S = 2 and S = 3 are represented. It can be
observed that the reflection at each higher stage
is a modulated version of that associated with the
previous stage. Namely, the reflection coefficient
exhibits a characteristic fractal profile that repro-
duces the self-similarity of the potential distribu-
tion. For example, for each ε, any wide peak at the
stage S is transformed in ε+1 peaks at S+1. We can
name this property as “Generalized self-similarity”.
It can also be seen that zero reflection occurs at
specific discrete energies, while near total reflection
is possible at other discrete energies. Moreover, an

increasing number of zeros is observed in the fractal
cases. These zeros represent resonances due to the
presence of “defects” in the quasi periodic potential,
obtained by removing some segments in the finite
periodic sequence. In the limit S → 0, the reflec-
tion coefficient for GCS fractal approaches unity
with very narrow resonances in the interval shown
in these figures. Even when the concept of frac-
tal is strictly reached when S goes to infinity, we
have truncated the Cantor set at S = 3 for each
ε. Four terms are enough to see the self-similarity
property of fractals as a tendency in the reflection
coefficients.

In order to quantify the self-similarity of the
reflection coefficient for the fractal potentials of
Figs. 2–4, the correlation coefficient defined by
Sakurada et al.25 is shown in Fig. 5. A general
function f(x) is self-similar with respect to a point
x0 in its domain, [x1, x2], if it remains unchanged
when rescaling its domain with x0 fixed, i.e., if
f(x0 + (x − x0)/γ) = γαf(x), where γ is a scal-
ing factor and α is the scaling exponent. Thus, the
correlation function with respect to the point x0 is
defined by the following expression:

C(γ) =

∫ x2

x1
f(x)f(x0 + (x− x0)/γ)dx√∫ x2

x1
f2(x)dx

∫ x2

x1
f2(x0 + (x− x0)/γ)dx

.

(9)

It can be noticed that C(γ) = 1 for a self-similar
function with respect to x0. The curves in Fig. 5
indicate the correlation function of the reflection
coefficient shown in Figs. 2–4 for the GCS poten-
tials at the stage S = 3. The local maxima at each
curve are at γ = ε + 1, that is, γ = 3, 4, and

Fig. 5 Correlation function C(γ) for the reflection coeffi-
cients shown in fractal Figs. 2–4 for the stage S = 3.
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γ = 5 for ε = 2, 3, and 4, respectively, clearly
showing the self-similarity of the reflection coeffi-
cient as a consequence of the fractal structure of the
potential.

4. CONCLUSIONS

The transfer matrix method has been used to solve
the particle scattering at one-dimensional constant
piecewise potentials in the form of a generalized
fractal Cantor set which is a more complex new
variant for the design of quantum superlattices.
Results have been compared to the case when using
the equivalent finite periodic potential. The self-
similarity of the generalized Cantor fractal was well
noticed in the curves of the reflection coefficients
for each value of the generalization parameter ε and
was shown quantitatively by means of the correla-
tion function. This results are particularly relevant
for the design of diffractive lens applications.

One step beyond in this study can be the incor-
poration of disorders in both the finite periodic and
fractal potentials by randomly perturbing the dis-
tance between the wells and the widths. This is a
way to take into consideration the imperfections of
small layer thickness fluctuations which will allow
to arrive to more refined models. This work also
suggests the use of the matrix transfer method to
treat other interesting proposals of one-dimensional
fractals such as Fibonacci sequence and Thue Morse
sequences of potential wells or barriers with proper
extensions to two-dimensional ones.
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