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a b s t r a c t

A new and straightforward proof of the unisolvability of the problem of multivariate poly-
nomial interpolation based on Coatmèlec configurations of nodes, a class of properly posed
set of nodes defined by hyperplanes, is presented. The proof generalizes a previous one for
the bivariate case and is based on a recursive reduction of the problem to simpler ones fol-
lowing the so-called Radon–Bézout process.

� 2011 Published by Elsevier Inc.
1. Introduction

The problem of polynomial interpolation of one-dimensional data has a widely known solution. However, despite its
apparent simplicity, multivariate polynomial interpolation remains a topic of current research [1–3]. The existence and
uniqueness of the interpolation polynomial strongly depends on the geometrical distribution of the interpolation points.
The distribution of points for which the interpolation problem is unisolvable is referred to as properly posed set of nodes
(PPSN).

The mathematical characterization of the most general PPSN is not currently known. The configurations of nodes based on
algebraic varieties, such as those of Bos [4] and Liang et al. [5,6], are very general but non-constructive. In a computational
setting, configurations based on hyperplanes, such as those of Coatmèlec [7] and Chung and Yao [8], are preferred.

Surprisingly, the configuration of nodes introduced by Coatmèlec [7] in the plane has received several names: DH-set [2],
straight line type node configuration [5], PPSN with node configuration A [9], straight line type node configuration A [10],
PPSN by the recursive construction theorem using lines [11], and PPSN by line-superposition process [12].

In this paper, a new proof of the unisolvability of the interpolation problem for Coatmèlec configuration of nodes in arbi-
trary dimensions is presented. The proof is based on a Bézout–Radon process [13,14]. Chui and Lai [9] present a proof for the
bivariate case only, state the result in arbitrary dimension, but did not prove it because of complications in their notation.
Multidimensional interpolation is the basis to develop different numerical methods. The results of this paper permit to
design, for example, generalized finite difference methods in irregular meshes based on Coatmèlec configuration of nodes
in two [15] or more dimensions.

The contents of this paper are as follows. The definitions and notation required to set our main theorem are presented in
the next section. The proof of this theorem is detailed in Section 3. Finally, in the last section, the main conclusions are
summarized.
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2. Presentation of the problem

Let PmðRkÞ be the vector space of multivariate polynomials of degree not greater than m with k variables. Let

w ¼ ðx1; . . . ; xkÞ> 2 Rk, where > denotes transpose, N0 ¼ N [ f0g, j ¼ ðj1; . . . ; jkÞ
> 2 C :¼ Nk

0, jjj = j1 + � � � + jk, wj ¼ xj1
1 xj2

2 � � � x
jk
k ,

and Cm :¼ {j 2 C : jjj 6m}. The set of multivariate monomials fwjgj2Cm
is a basis of PmðRkÞ, i.e., every polynomial pm(w)

may be written uniquely as
P

j2Cm
ajwj, with aj 2 R. Hence, the vector space PmðRkÞ has dimension N ¼ Ck

kþm, where Ck
n is

the binomial coefficient n
k

� �
.

Let Cs :¼ {j 2Cm : jjj = s}, s = 0, 1, . . ., m. Note that Cm ¼ [m
s¼0C

s, the cardinal #Cs ¼ Ck�1
k�1þs, and #Cm ¼

Pm
s¼0Ck�1

k�1þs ¼ N. The
set of sth degree monomials may be represented as a column vector of length #Cs given by
wðsÞ :¼ ðxs

1; x
s�1
1 x1

2; . . . ; xi1 xi2 � � � xis ; . . . ; x1
k�1xs�1

k ; xs
kÞ
>, for all i ¼ ði1; . . . ; isÞ> 2 Ns

0, and 1 6 i1 6 i2 6 � � � 6 is 6 k. Note that

wð0Þ ¼ ð1Þ 2 R, wð1Þ ¼ w 2 Rk, and each component of the vector w(s) corresponds to a unique monomial wj with j 2 Cs. Using
this notation, every polynomial pmðwÞ 2 PmðRkÞ may be written as

Pm
s¼0

P
j2Cs ajwj.

Here on, a node refers to a point in Rk and a configuration of nodes (CN) is a set of pairwise distinct nodes Xm ¼ fwigN
i¼1

where wi � ðxð1;iÞ; xð2;iÞ; . . . ; xðk;iÞÞ> 2 Rk.
The Lagrange interpolation problem may be stated as follows: Given a CN Xm and an arbitrary set of real numbers

ffi 2 RgN
i¼1, find a polynomial pmðwÞ 2 PmðRkÞ such that
pmðwiÞ :¼
X
j2Cm

ajw
j
i ¼ fi; i ¼ 1;2; . . . ;N: ð1Þ
This problem is properly posed with respect to Xm if it has a unique solution (unisolvability) for every set ffigN
i¼1. Compared

with the one-dimensional case where the solvability is always assured, the solvability of multivariate interpolation depends
strongly on the geometrical distribution of the nodes. A CN Xm is said to be a properly posed set of nodes (PPSN) if the Lagrange
interpolation problem is properly posed with respect to Xm.

Eq. (1) is a system of N linear equations with a multivariate Vandermonde matrix Vm, i.e., ðVmÞij ¼ wj
i , where j 2 Cm, wi 2

Xm, and 1 6 i 6 N. Note that this matrix looks a little bit bizarre since rows and columns are indexed by different structural
entities. A graded lexicographical order in the set of multiindices Cm may be introduced to enhance the notation (see Ref.
[16]) but this is not required in this paper.

The following theorem summarizes some previously known results.

Theorem 1. Let Xm ¼ fwigN
i¼1 be a CN in k dimensions and Vm the corresponding multivariate Vandermonde matrix, then the

following expressions are equivalent:

(i) Xm is a PPSN in Rk.
(ii) Vm is a nonsingular matrix, i.e., det(Vm) – 0.

(iii) rank(Vm) = N.

Let Xm � Xðm;kÞ ¼ fwigN
i¼1 � Rk be a CN with N ¼ Ck

mþk nodes in k dimensions. Let us define by induction on k the following
CNs, first introduced by Coatmèlec [7,9].

Definition 2. A CN Xm � Xðm;kÞ � Rk is Coatmèlec in k dimensions if Xðm;kÞ ¼
Sm

p¼0Xðp;k�1Þ with #Xðp;k�1Þ ¼ Ck�1
pþk�1 and there

exists m + 1 hyperplanes c0,c1,. . .,cm such that X(m,k�1) � cm and Xðp;k�1Þ � cp n
Sm

q¼pþ1cq, for 0 6 p 6m � 1, with each X(p,k�1)

being Coatmèlec in (k � 1) dimensions by identifying each hyperplane cp with Rk�1.
Note that, in one dimension, every CN Xm � Xðm;1Þ � R is Coatmèlec because all its nodes are pairwise distinct, i.e., wi – wj,

if i – j. Note also that, in Definition 2, only one node belongs to the hyperplane cm.
The main result of this paper is a proof of the following theorem.

Theorem 3. Every Coatmèlec CN Xm in k dimensions is a properly posed set of nodes in Rk.
3. Proof of the main theorem

Our proof makes use of the following lemmas.

Lemma 4. Let us take the CN Xm where the nodes fwigN
i¼1 are represented as column vectors in Rk, and the CN bXm whose nodes are

ŵi ¼ w0 þ Hwi; i ¼ 1; . . . ;N, where w0 is an arbitrary vector and H is a non-singular matrix of dimension k. Let Vm and bV m be the
Vandermonde matrices associated to the CNs Xm and bXm, respectively. If rank(Vm) = N, then rankðbV mÞ ¼ N.
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Proof of Lemma 4. For every set of real numbers ffi 2 RgN
i¼1, there exists one and only one interpolating polynomial such

that p̂mðŵiÞ ¼ fi, given by p̂mðx̂Þ ¼ pmðH
�1ðx�w0ÞÞ where pm(x) is the unique interpolating polynomial for Xm given by The-

orem 1. Therefore, rankðbV mÞ ¼ N.
Lemma 5. Let fx̂i : i ¼ 1; . . . ; kg be an orthonormal basis of Rk, and n1 an arbitrary vector. There always exists an orthogonal
matrix H, representing a rotation in Rk, which transform the vector x̂1 onto Hx̂1 ¼ n̂1 ¼ n1=kn1k.
Proof of Lemma 5. If n̂1 ¼ x̂1, then H = I, the identity matrix. Otherwise, let us apply the procedure of Gram–Schmidt ort-
honormalization to vectors fx̂1;n1g, yielding
q̂1 ¼ x̂1; q2 ¼ n1 � ðn1 � q̂1Þq̂1; q̂2 ¼
q2ffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � q2
p ¼ q2

kq2k
;

where the dot is the ordinary Euclidean dot product. An arbitrary vector q can be written as q = q\ + qVert, where
qk ¼ ðq � q̂1Þq̂1 þ ðq � q̂2Þq̂1 ¼ QQ>q, where Q ¼ ½q̂1; q̂2� is the rectangular matrix whose columns are the vectors q̂i; note that
Q>Q is the identity matrix of dimension 2. Taking the vector q\ = q � qk as the rotation axis for the rotation matrix H results
in Hq = q\ + Hqk = (I � QQ>)q + QRQ>q, where R is the standard two-dimensional rotation matrix
R ¼
cos h � sin h

sin h cos h

� �
; cos h ¼ x̂1 � n̂1; sin h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx̂1 � n̂1Þ2

q
:

Hence, H = I � QQ> + QRQ> is a rotation matrix (HH> = H>H = I and det(H) = 1) such that Hx̂1 ¼ n̂1.
Proof of Theorem 3. Let us use the induction principle over m and k. Let us first consider m = 0 and any k 2 N. Clearly
X0 = w1 and rank(V0) = 1 = N. We consider next k = 1 and m – 0. The corresponding CN is Coatmèlec in one dimension and
the coefficient matrix is a (one-dimensional) Vandermonde matrix with maximal rank C1

mþ1 ¼ mþ 1 ¼ N, since the nodes
are pairwise distinct.

By the induction hypothesis, let us assume that the theorem holds for either m � 1 or k � 1, and let us prove that it
holds for m and k. Here on, let us take n = m + k. Since Xm is a Coatmèlec CN in k dimensions, the following conditions are
fulfilled
Xðm;k�1Þ ¼ w1;w2; . . . ;wCk�1
n�1

n o
� cm;

Xðm�1;k�1Þ ¼ wCk�1
n�1þ1; . . . ;wCk�1

n�1þCk�1
n�2

n o
� cm�1 n cm;

Xðm�2;k�1Þ ¼ wCk�1
n�1þCk�1

n�2þ1; . . . ;wCk�1
n�1þCk�1

n�2þCk�1
n�3

n o
� cm�2 n cm�1 [ cm;

..

.

Xð0;k�1Þ ¼ fwNg � c0 n c1 [ � � � [ cm;
where
Xm ¼ Xðm;k�1Þ [ Xðm�1;k�1Þ [ � � � [ Xð0;k�1Þ:
The multivariate Vandermonde matrix associated to the Lagrange interpolation problem in the CN Xm may be written as
Vm ¼

1 1 � � � 1
wð1Þ1 wð1Þ2 � � � wð1Þ

Ck
n

wð2Þ1 wð2Þ2 � � � wð2Þ
Ck

n

..

. ..
. ..

.

wðmÞ1 wðmÞ2 � � � wðmÞ
Ck

n

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Let us apply the affine transformation ŵ ¼ w0 þ Hw to all the nodes of the CN, where H is the orthogonal matrix given in
Lemma 5, that transforms the xk coordinate axis in Rk into the normal vector to the hyperplane cm, and w0 is the distance
between the intersection point of the (new) rotated xk axis and the hyperplane cm.

The application of the affine transformation nullifies the kth coordinates of the vectors fŵ1; ŵ2; . . . ; ŵCk�1
n�1
g, hence

ŵi ¼ ðx̂ð1;iÞ; x̂ð2;iÞ; . . . ; x̂ðk�1;iÞ;0Þ>. Let bV m, where ðbV mÞij ¼ ŵj
i , be the coefficient matrix of the transformed linear system of

equations. From Lemma 4, rankðVmÞ ¼ rankðbV mÞ.
The rows and columns of the matrix bV m may be sorted by renaming the nodes ŵi to ~wi, in order to group all its zero

elements into its left-bottom part. This process preserves the rank. The resulting matrix eV m has the following structure
A B

0 A0D

� �
; ð2Þ
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where A is the Ck�1
n�1 � Ck�1

n�1 matrix given by
A ¼

1 1 � � � 1

~wð1Þ1
~wð1Þ2 � � � ~wð1Þ

Ck�1
n�1

~wð2Þ1
~wð2Þ2 � � � ~wð2Þ

Ck�1
n�1

..

. ..
. . .

. ..
.

~wðmÞ1
~wðmÞ2 � � � ~wðmÞ

Ck�1
n�1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

B is the Ck�1
n�1 � Ck

n�1 matrix
B ¼

1 1 � � � 1

~wð1Þ
Ck�1

n�1þ1
~wð1Þ

Ck�1
n�1þ2

� � � ~wð1Þ
Ck

n

~wð2Þ
Ck�1

n�1þ1
~wð2Þ

Ck�1
n�1þ2

� � � ~wð2Þ
Ck

n

..

. ..
. . .

. ..
.

~wðmÞ
Ck�1

n�1þ1
~wðmÞ

Ck�1
n�1þ2

� � � ~wðmÞ
Ck

n

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

D is the Ck
n�1 � Ck

n�1 diagonal matrix
D ¼

x̂ðk;Ck�1
n�1þ1Þ 0 � � � 0

0 x̂ðk;Ck�1
n�1þ2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � x̂ðk;Ck
nÞ

0
BBBBBBB@

1
CCCCCCCA
;

A0 is the Ck
n�1 � Ck

n�1 matrix given by
A0 ¼

1 1 � � � 1

~wð1Þ
Ck�1

n�1þ1
~wð1Þ

Ck�1
n�1þ2

� � � ~wð1Þ
Ck

n

..

. ..
. . .

. ..
.

~wðmÞ
Ck�1

n�1þ1
~wðmÞ

Ck�1
n�1þ2

� � � ~wðmÞ
Ck

n

0
BBBBBBB@

1
CCCCCCCA
;

and finally 0, cf. Eq. (2), represents the null matrix of dimensions Ck
n�1 � Ck�1

n�1. We recall that Ck
n ¼ Ck�1

n�1 þ Ck
n�1.

The square matrix A is a multivariate Vandermonde matrix in (k � 1) variables and the Ck�1
n�1 nodes f~wig are a Coatmèlec

CN in (k � 1) dimensions. Therefore, by the induction hypothesis, rankðAÞ ¼ Ck�1
n�1.

The diagonal matrix D is nonsingular, i.e., x̂k;i–0, for i ¼ Ck�1
n�1 þ 1; . . . ;Ck

n, because if there existed at least an i with x̂k;i ¼ 0,
then there would be at least Ck�1

n�1 þ 1 different nodes lying in the hyperplane cm, but this is not possible because Xm is a
Coatmèlec CN. Hence, rank(A0D) = rank(A0). Moreover, the matrix A0 is also a multivariate Vandermonde matrix
corresponding to the Ck

n�1 nodes that do not belong to the hyperplane cm. Since the Coatmèlec property of a CN does not
change under either rotation or translation of all the nodes, the CN f~wig, i ¼ Ck�1

n�1 þ 1; . . . ;Ck
n, is also a Coatmèlec CN. The

induction hypothesis yields that the rank of matrix A0 is Ck
n�1.

Finally, the rank of the Ck
n � Ck

n matrix eV m is rankðAÞ þ rankðA0Þ ¼ Ck�1
n�1 þ Ck

n�1 ¼ Ck
n, and the theorem is proved.
4. Conclusions

The unisolvency of the problem of multivariate polynomial interpolation in a Coatmèlec CN, a kind of properly posed set
of nodes defined by hyperplanes, has been shown through a new and straightforward proof. This proof uses elementary tech-
niques from linear algebra. This fact permits the understanding of the topic by nonexperts and opens the possibility of it
being incorporated in numerical analysis textbooks.

The geometrical condition characterizing Coatmèlec CNs is one of the most general conditions currently available for the
characterization of properly posed set of nodes defined by hperplanes, which is easier and more efficient to be checked by an
automatic computational software than the widely known geometrical characterization of Chung and Yao [8]. Therefore,
Coatmèlec CNs are useful in mesh generation for the numerical solution of partial differential equations in irregular domains,
such as generalized finite difference methods.
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