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We propose the use of a new diffractive optical element coined Devil’s Vortex-Lens (DVL) to produce optical tweezers. In its more general
form it results as the combination of a Devil’s lens and a helical vortex phase mask. It is shown that under monochromatic illumination a
DVL generates a focal volume with several concatenated doughnut modes that are axially distributed according to the self-similarity of the
lens. The orbital angular momentum associated to each link in the chain is investigated. [DOI: 10.2971/jeos.2010.10037s]
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1 INTRODUCTION

Optical vortices extended the capabilities of conventional op-
tical traps because in addition to trap microparticles they are
capable to set these particles into rotation due to its inherent
orbital angular momentum [1, 2]. In this way, optical vortices
are proposed a promising class of actuators for micromechan-
ical systems [3], and arrays of optical vortices have shown the
ability to assemble colloidal particles into mesoscopic pumps
for microfluidic systems [4].

Among the several methods that have been proposed for
optical vortices generation the spiral phase plate [5] stands
out, mainly because it provides high energy efficiency. Spiral
phase plates have been recently combined with other novel
optical elements, the Fractal zone plates (FraZPs), to produce
a sequence of focused optical vortices along the propagation
direction. Two different results were independently obtained:
the spiral fractal zone plate [6] and the devil’s vortex lens [7]. The
later has been shown to have even better diffraction efficiency
than the former.

It has been demonstrated that, these vortex lenses provide the
potential to generate multiple-plane optical trappings in the
microscopic scale with a true volumetric extension. This fea-
ture represents an advantage over conventional vortices, since
they are not maintained as focused outside the depth of fo-
cus of the beam. Since the DVL improves the diffraction ef-
ficiency of the spiral fractal zone plate; in this paper, we em-
phasize that these elements are able to create a chain of optical
traps along the optical axis with a tunable separation, strength
and transverse section. Further, we develop some additional

properties of DVL. We discuss the influence of the topological
charge on the self-similarity of the axial irradiance and also we
investigate the variation of the angular momentum provided
by the doughnut shaped foci.

2 LENSES WITH DEVIL’S STAIRCASE
PROFILE.

Fractal zone plates (FraZP) are zone plates with a fractal struc-
ture along the squared radial coordinate [8]–[11]. Compared
with a binary Fresnel zone plate, a FraZP presents not only the
major foci appearing at distances of f , f /3, f /5, . . . , but also
several additional subsidiary focal points surrounding the re-
gions of the axial major foci. The axial distribution of these
foci follows the fractal structure of the FraZP. Inspired by the
FraZP we have recently presented the DVL which are pure
phase blazed FraZPs modulated by a helical phase structure
[7].

The design of a DVL is based on the 1-D Cantor function [11,
12] also known as devil’s staircase. This function is defined in
the domain [0,1] as

FS (x) =

{
l

2S if pS,l ≤ x ≤ qS,l
1

2S
x−qS,l

pS,l+1−qS,l
+ l

2S if qS,l ≤ x ≤ pS,l+1
, (1)

being FS(0) = 0 and FS(1) = 1. In Figure 1 we have repre-
sented the triadic Cantor set developed up to S = 3 and the
corresponding function F3(x). It can be seen that the steps of
the devil’s staircase, take the constant values l/23 in the inter-
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FIG. 1 Triadic Cantor set for S = 1, 2, and 3. The structure for S = 0 is the initiator

and the one corresponding to S = 1 is the generator. The Cantor function or Devil’s

staircase, FS(x), is shown under the corresponding Cantor set for S = 3.

vals p3,l ≤ x ≤ q3,l (with l = 1, . . . , 7) whereas in between
these intervals the function increases linearly.

From a particular Cantor function FS(x) a DVL is a pure-phase
diffractive optical element whose transmittance is defined by

q(ζ, ϕ) = exp
[
−i2S+1π FS(ζ)

]
× exp [imϕ] , (2)

where ς = (r/a)2 is the normalized quadratic radial variable,
a is the lens radius, and m is the topological charge. Thus
the transmittance of a DVL can be expressed as the product
of two factors, the first one, associated to a devil’s lens [11],
has only a radial dependence. The other one, corresponds to
a vortex lens and it has a linear phase dependence on the az-
imuthal angle. Note that, the phase variation along the radial
coordinate is quadratic in each zone of the lens. At the gap re-
gions defined by the Cantor set the phase shift is −l2π, with
l = 1, ..., 2S − 1. The form of DVLs for S = 3 and for several
values of the topological charge m = 0, 1, 2 are depicted in the
right column of Figure 2 in which the gray levels show the
continuous phase variation. For comparison, the correspond-
ing conventional kinoform vortex lenses are shown in the left
column of the same figure.

3 AXIAL BEHAVIOR OF DVLs.

Within the Fresnel approximation the diffracted field at a
given point (z, r, θ) can be characterized by the irradiance and
the phase functions, which are given respectively by:

I(z, r) =
(

2π

λz

)2 ∣∣∣∣∫ a

0
q(ζ) exp

[
−i

π

λz
a2ζ
]

Jm

(
2π

λz
ar
√

ς

)
dζ

∣∣∣∣
(3)

Φ (z, r, θ) = m
(

θ +
π

2

)
− 2π

λ
z− πr2

λz
− π

2
; (4)

FIG. 2 Phase variation as gray levels for vortex lenses with different values for the

topological charge. Left: Conventional Fresnel kinoforms; Right: DVLs (S = 3), with

topological charges m = 0, 1, and 2.

where z is the axial distance from the pupil plane and λ is the
wavelength of the plane wave. By using the above equations
we have computed the irradiance provided by the DVLs in
Figure 2. The results are represented in Figure 3. As expected,
the axial response for the DVLs exhibit a single major focus
at fs = a2/2λ3s and a number of subsidiary focal points sur-
rounding it, producing a focal volume with a characteristic
fractal profile. Note that, for non-null values of the topological
charge each focus is a vortex and a chain of doughnut shaped
foci is generated. Figures 3(b) and 3(c) show the focal volume
associated to the DVL with m = 1 and m = 2, respectively. We
have also computed the diffraction patterns for different topo-
logical charges and verified that the diameter of the doughnut
increases with the topological charge as happens with con-
ventional vortex producing lenses [13, 14]. For comparison the
pattern corresponding to conventional kinoform vortex lenses
are shown in Figure 4. It can be seen that the axial position of
the focus of the Fresnel kinoform vortex lens and the central
lobe of the DVL focus both coincide at the normalized dis-
tance. For the DVLs we have found that the axial irradiance
distributions corresponding to different values of S are self-
similar, i.e., as S becomes larger an increasing number of zeros
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FIG. 3 Normalized irradiance contours computed for the DVLs in Figure 2. (a) m = 0,

(b) m = 1, and (c) m = 2.

and maxima are encountered but the scaled irradiance corre-
sponding to the DVLs of low level form the envelope of those
corresponding to the upper ones. This focalization behavior,
which is here demonstrated that DVLs satisfy was previously
found for FraZPs and it was called the axial scale property in [8].
If, as it was done in this work, we express the axial irradiance
in terms of the normalized axial coordinate u = a2/2λz, then
it is easy to show that, in terms of this variable, Eq. (3) can be
understood as a Fourier transform with frequency component
u. Thus, from well-known properties of fractals, it is straight-
forward to obtain that DVLs provide a self-similar axial irra-
diances in the variable u.

To investigate quantitatively the degree of self-similarity of
the axial irradiances provided by DVLs with different val-
ues of m, we calculated the following normalized correlation
[15] between the axial irradiances, computed using Eq. (3) for
S = 3 and different scales γ, i.e.:

C(γ) =

∫ ∞
−∞ I (u) I ((u− u0) /γ + u0)) du√∫ ∞

−∞ I2 (u) du
∫ ∞
−∞ I2 ((u− u0) /γ + u0)) du

,

(5)
where u0 = a2/2λ fS = 3S is the normalized main focal dis-
tance. Note that C(γ) = 1 only when I(u) satisfies the strict
axial self-similar property I(u) = I ((u− u0)/(γ + u0)), i.e.,
for γ = 1. Correspondingly, lower degrees of self-similarity
give values of C(γ) lower than unity. Therefore, if C(γ) is plot-
ted against the logarithm of the scale, some local maxima of
the curve are expected to appear at γ = 3i with i = 0, 1, . . ., S.
The results are shown in Figure 5. In these curves local max-
ima appear at γ = 1, 3, 9, and 27. For m = 0 the values of the
irradiance in Eq. (5) were computed along the optical axis. For
m = 1 and m = 2 the irradiances were computed for fixed val-
ues of r coinciding with the maximum value of the irradiances

FIG. 4 Normalized irradiance contours computed for the conventional vortex lenses in

Figure 2. (a) m = 0, (b) m = 1, and (c) m = 3.

FIG. 5 Correlation function C(γ) for the axial irradiances computed for the DVLs in

Figure 2.

in Figure 3. It can be seen that the degree of self similarity low-
ers for increasing m.

4 EVOLUTION OF THE ANGULAR
MOMENTUM

Eq. (4) has been used to calculate the phase variations of the
diffracted field from plane to plane generated by the DVLs
represented in Figure 4 around the main vortices. The results
are shown in Figure 6. In the animation each frame represents
the form of the transverse field contours as the product of the
irradiance and the phase of the wavefront. The intensities are
normalized to the maximum value at each transverse plane. In
this way, the relative intensity at the vortices can be directly
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FIG. 6 Transverse field maps (as the product of the irradiance times phase) at (a)

z/ f = 2 , (b) z/ f = 1, and (c) z/ f = 2/3, computed for the DVLs represented in

Figure 2 with S = 3 and m = 2. The animation (videosize 3.9 MB, format: gif, see

Fig6.gif) shows the evolution of the vortices as they propagate through the foci in an

axial interval ∆(z/ f ) = 1.71 × 10-5.

compared. These animations show the annular form of the
transverse intensity and also the phase rotation with the ax-
ial coordinate. Note that due to the form of this representation

only the changes in the phase are relevant since the intensity
didn’t change with time. The concentric rings are caused by
constructive interferences of the different rings of the DVL.
According to Eq. (4) the variation of the phase with the vari-
able z predicts a different momentum for the different links
of the chain. However, in Figure 6 these differences cannot be
appreciated. The reason for this apparent paradox lies in the
values of the parameters used in the calculation for this figure.
In fact, for this set of parameters the derivative of the phase
with respect to z of the term that depends inversely propor-
tional to z is negligible compared to the other term depending
linearly on the same variable. As a final remark on Figure 6 we
mention that obviously, if the topological charge has negative
sign, the rotation will be in the opposite sense.

5 CONCLUSIONS

The ability of DVLs to produce multiple vortex-tweezer has
been investigated. It was found that, contrary to conventional
spiral zone plate, which produces a single vortex-tweezer a
DVL generates a delimited chain of vortices that are axially
distributed. The distances between the links of the chain de-
pend on the level S of the Cantor function and the radii of
the doughnuts increase with the topological charge. The evo-
lution of the irradiance along the propagation axis reproduces
the fractality of the pupil. The orbital angular momentum as-
sociated to each link on the chain is also mainly dependent on
the topological charge and it can be nearly independent of its
axial location.

The particular focal volume provided by DVLs could be prof-
ited as versatile and very efficient optical tweezers since in
addition to exert a torque on micrometer-scale objects having
a high refraction index, it can also trap the low-index particles
in the zero intensity region of the doughnut.
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