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4.1 Introduction
One of the main features of phase space is that its conjugate coor-
dinates are noncommutative and cannot be simultaneously specified
with absolute accuracy. As a consequence, there is no phase-space joint
distribution that can be formally interpreted as a joint probability den-
sity. Indeed, most of the classic phase-space distributions, such as the
Wigner distribution function (WDF), the ambiguity function (AF), or
the complex spectrogram, have difficult interpretation problems due
to the complex, or negative, values they have in general. Besides, they
may be nonzero even in regions of the phase space where either the sig-
nal or its Fourier transform vanishes. This is a critical issue, especially
for the characterization of nonstationary or nonperiodic signals. As
an alternative, the projections (marginals) of the phase-space distribu-
tions are strictly positive, and as we will see below, they give informa-
tion about the signal on both phase-space variables. These projections
can be formally associated with probability functions, avoiding all
interpretation ambiguities associated with the original phase-space
distributions. This is the case of the Radon-Wigner transform (RWT),
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closely related to the projections of the WDF in phase space and also
intimately connected with AF, as will be shown.

The general structure of this chapter is as follows. In Sec. 4.2, a gen-
eral overview of mathematical properties of the RWT is given, and
a summary of different optical setups for achieving it is presented.
Next, the use of this representation in the analysis of optical signals
and systems is developed in several aspects, namely, the computation
of diffraction intensities, the optical display of Fresnel patterns, the
amplitude and phase reconstruction of optical fields, and the calcula-
tion of merit function in imaging systems. Finally, in Sec. 4.4, a review
of design techniques, based on the utilization of the RWT, for these
imaging systems is presented, along with some techniques for optical
signal processing.

4.2 Projections of the Wigner Distribution
Function in Phase Space: The
Radon-Wigner Transform (RWT)
The RWT was first introduced for the analysis and synthesis of
frequency-modulated time signals, and it is a relatively new formal-
ism in optics.1,2 However, it has found several applications in this field
during the last years. Many of them, such as the analysis of diffrac-
tion patterns, the computation of merit functions of optical systems, or
the tomographic reconstruction of optical fields, are discussed in this
chapter. We start by presenting the definition and some basic proper-
ties of the RWT. The optical implementation of the RWT which is the
basis for many of the applications is discussed next.

Note, as a general remark, that for the sake of simplicity most of the
formal definitions for the signals used hereafter are restricted to one-
dimensional signals, i.e., functions of a single variable f (x). This is
mainly justified by the specific use of these properties that we present
in this chapter. The generalization to more than one variable is in most
cases straightforward. We will refer to the dual variables x and � as
spatial and spatial-frequency coordinates, since we will deal mainly with
signals varying on space. Of course, if the signal is a function of time
instead of space, the terms time and frequency should be applied.

4.2.1 Definition and Basic Properties
We start this section by recalling the definition of the WDF associated
with a complex function f (x), namely,

W{ f (x′), x, �} = Wf (x, �)

=
+∞∫

−∞
f
(

x + x′

2

)
f ∗

(
x − x′

2

)
exp (−i2��x′) dx′ (4.1)
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which also can be defined in terms of the Fourier transform (FT) of
the original signal

F{ f (x), �} = F (�) =
+∞∫

−∞
f (x) exp (−i2��x) dx (4.2)

as

Wf (x, �) =
+∞∫

−∞
F

(
� + �′

2

)
F ∗

(
� − �′

2

)
exp (i2��′x) d�′ (4.3)

It is interesting to remember that any WDF can be inverted to recover,
up to a phase constant, the original signal or, equivalently, its Fourier
transform. The corresponding inversion formulas are3

f (x) = 1
f ∗(x′)

+∞∫
−∞

Wf

(
x + x′

2
, �

)
exp [i2��(x − x′)] d� (4.4)

F (�) = 1
F ∗(�′)

+∞∫
−∞

Wf

(
x,

� + �′

2

)
exp [−i2�(� − �′)x] dx (4.5)

Note that these equations state the uniqueness of the relationship be-
tween the signal and the corresponding WDF (except for a phase con-
stant). It is straightforward to deduce from these formulas that the
integration of the WDF on the spatial or spatial-frequency coordinate
leads to the modulus square of the signal or its Fourier transform,
respectively, i.e.,

| f (x)|2 =
+∞∫

−∞
Wf (x, �) d� (4.6)

|F (�)|2 =
+∞∫

−∞
Wf (x, �) dx (4.7)

These integrals, or marginals, can be viewed as the projection of the
function Wf (x, �) in phase space along straight lines parallel to the �
axis [in Eq. (4.6)] or to the x axis [in Eq. (4.7)]. These cases are particular
ones of all possible projections along straight lines of a given function
in phase space. In fact, for any function of (at least) two coordinates,
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FIGURE 4.1 Projection scheme for the definition of the Radon transform.

say, g(x, y), its Radon transform is defined as a generalized marginal

R {g (x, y) , x�, �} = Rg(x�, �) =
+∞∫

−∞
g (x, y) dy� (4.8)

where, as presented in Fig. 4.1, x� and y� are the coordinates rotated
by an angle �. It is easy to see from this figure that

Rg(x�, � + �) = Rg(−x�, �) (4.9)

Thus, the reduced domain � ∈ [0, �) is used for Rg(x�, �). Note that the
integration in the above definition is performed along straight lines
characterized, for a given pair (x�, �), by the equation

y = x�

sin �
− x

tan �
for � �= 0,

�

2
x = x� for � = 0

y = x� for � = �

2

(4.10)
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and therefore Eq. (4.8) can be reformulated as

Rg(x�, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

g
(

x,
x�

sin �
− x

tan �

)
dx for � �= 0,

�

2

+∞∫
−∞

g (x�, y) dy for � = 0

+∞∫
−∞

g (x, x�) dx for � = �

2

(4.11)

Thus, when we consider as projected function Wf (x, �), we can define
the generalized marginals as the Radon transform of this WDF, namely,

R{Wf (x, �), x�, �} = RWf (x�, �) =
+∞∫

−∞
Wf (x, �) d��

=
+∞∫

−∞
Wf (x� cos � − � sin �, x� sin � + � cos �) d�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wf

(
x,

x�

sin �
− x

tan �

)
dx for � �= 0,

�

2

+∞∫
−∞

Wf (x�, �) d� for � = 0

+∞∫
−∞

Wf (x, x�) dx for � = �

2

(4.12)

where, in the last expression, we have explicitly considered the equa-
tions for the integration lines in the projection. In terms of the original
signal, this transform is called its Radon-Wigner transform. It is easy
to show that

RWf (x�, �) = RWf (x�, �) =
+∞∫

−∞

+∞∫
−∞

f
(

x� cos � − � sin � + x′

2

)

× f ∗
(

x� cos � − � sin � − x′

2

)
× exp[−i2�(x� sin � + � cos �)x′] dx′d� (4.13)
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By performing a proper change in the integration variables, the fol-
lowing more compact expression can be obtained

RWf (x�, �)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣ 1
sin �

∣∣ ∣∣∣∣+∞∫
−∞

f (x) exp
(

i� x2

tan �

)
exp

(−i2� x�x
sin �

)
dx

∣∣∣∣
2

for � �= 0, �
2

| f (x0 = x)|2 for � = 0∣∣F
(

x�/2 = �
)∣∣2 for � = �

2

(4.14)

From this equation it is clear that

RWf (x�, �) ≥ 0 (4.15)

This is a very interesting property, since the WDF cannot be positive
in whole phase space (except for the particular case of a Gaussian
signal). Note also that from Eq. (4.14) a symmetry condition can be
stated, namely,

RWf (x�, � − �) = RWf ∗ (−x�, �) (4.16)

so that for real signals, that is, f (x) = f ∗(x)∀x ∈ R, one finds

RWf (x�, � − �) = RWf (−x�, �) (4.17)

and, therefore, for this kind of signal the reduced domain � ∈ [0, �)
in the Radon transform is clearly redundant. In this case, the range
� ∈ [0, �/2] contains in fact all the necessary values for a full definition
of the RWT.

Equation (4.14) also allows one to link the RWT with another inte-
gral transform defined directly from the original signal, namely, the
fractional Fourier transform (FrFT). This transformation, often con-
sidered a generalization of the classic Fourier transform, is given by

F p { f (x), �}

= Fp(�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp[i(�+��2/tan �)]√
i sin �

+∞∫
−∞

f (x)

× exp
(

i� x2

tan �

)
exp

(−i2� �x
sin �

)
dx for � �= 0, �

2

f (�) for � = 0

F (�) for � = �
2

(4.18)
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where � = p�/2. From this definition, it is easy to see that

RWf (x�, �) = |F2�/�(x�)|2 (4.19)

so that the RWT can be also interpreted as a two-dimensional repre-
sentation of all the FrFTs of the original function.

Another interesting relationship can be established between the
RWT and the AF associated with the input signal. For our input signal
the AF is defined as

A{ f (x), �′, x′} = Af (�′, x′)

=
+∞∫

−∞
f
(

x + x′

2

)
f ∗

(
x − x′

2

)
exp(−i2��′x) dx (4.20)

which can be understood as the two-dimensional FT of the WDF, i.e.,

F2D{Wf (x, �), �′, x′} =
+∞∫

−∞

+∞∫
−∞

Wf (x, �) exp [−i2�(�′x + x′�)] dx d�

= Af (�′, −x′) (4.21)

There is a well-known relationship between the two-dimensional FT
of a function and the one-dimensional Fourier transformation of its
projections. This link is established through the central slice theorem,
which states that the values of the one-dimensional FT of a projection
at an angle � give a central profile—or slice—of the two-dimensional
FT of the original signal at the same angle. If we apply this theorem
to the WDF, it is straightforward to show that

F{RWf (x�, �), ��} = Af (�� cos �, −�� sin �) (4.22)

i.e., the one-dimensional FT of the RWT for a fixed projection angle
� provides a central profile of the AF Af (�′, x′) along a straight line
forming an angle −� with the �′ axis. These relationships together
with other links between representations in the phase space are sum-
marized in Fig. 4.2.

To conclude this section, we consider the relationship between the
RWT of an input one-dimensional signal f (x) and the RWT of the same
signal but after passing through a first-order optical system. In this
case, the input signal undergoes a canonical transformation defined
through four real parameters (a, b, c, d) or, equivalently, by a 2×2 real
matrix

M =
(

a b
c d

)
(4.23)



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

114 C h a p t e r F o u r

f(x)
W

Wf (x, ξ)
A

rf (x, x') = f (x + x'/2) f *(x + x'/2)

F {x' → ξ}

R

RWf (xθ, θ)

Af (ξ', x')

F–
1  {ξ → x'}

F {x → ξ'}F–1 {ξ' → x}

A–1W–1

R–1

(1) (2)

(3) (4)F
–1  {(√ξ'2 + x'2 , θ) p →

 x θ}

F {x θ →
 (√ξ'2 + x'2 ,θ) p}

|F
p| 2 {x→

xθ }

θ =
 pπ/2

FIGURE 4.2 Relationship diagram between the original signal f (x) and
different phase-space representations. F , F p , W , A, and R stand for FT,
FrFT, WDF integral, AF transform and Radon transformation, respectively,
while −1 represents the corresponding inverse operator. (1) WDF and
inverse transform; (2) AF and inverse transform; (3) projection (Radon)
transformation and tomographic reconstruction operator; (4) expression of
the central slice theorem applied to Radon transform and AF; and (�, �) p

represents polar coordinates in phase space.

in such a way that the transformed signal g(x) is given by

g(x)

=

⎧⎪⎪⎨
⎪⎪⎩

1√
ib

exp
(

−i�dx′2
b

) +∞∫
−∞

f (x′) exp
(

−i�ax′2
b

)
exp

( i2�
b x x′) dx′ b �= 0

exp
(

−i�cx′2
a

)
1√
a f

( x
a

)
b = 0

(4.24)

which are the one-dimensional counterparts of Eqs. (3.4) and (3.7). We
are restricting our attention to nonabsorbing systems corresponding
to the condition det M = ad − bc = 1.

The application of a canonical transformation on the signal pro-
duces a distortion on the corresponding WDF according to the general
law

Wg(x, �) = Wf (ax + b�, cx + d�) = Wf (x′, �′) (4.25)

where the mapped coordinates are given by(
x′
�′

)
=

(
a b
c d

)(
x
�

)
(4.26)



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

T h e R a d o n - W i g n e r T r a n s f o r m 115

By applying the definition in Eq. (4.12), it is straightforward to obtain

RWg(x�, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wg
(

x, x�

sin � − x
tan �

)
dx for � �= 0, �

2

+∞∫
−∞

Wg (x�, �) d� for � = 0

+∞∫
−∞

Wg (x, x�) dx for � = �
2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

Wf
(
ax + b

( x�

sin � − x
tan �

)
, cx

+d
( x�

sin � − x
tan �

))
dx for � �= 0, �

2

+∞∫
−∞

Wf (ax� + b�, cx� + d�) d� for � = 0

+∞∫
−∞

Wf (ax + bx�, cx + dx�) dx for � = �
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∝ RWf (x�′ , �′) (4.27)

where the mapped coordinates for the original RWT are given by

tan �′ = −a tan � − b
c tan � − d

, x�′ = x�

a sin � − b cos �
sin �′ (4.28)

Let us consider in the following examples a spatially coherent light
distribution f (x), with wavelength �, that travels along a system that
imposes a transformation in the input characterized by an abcd trans-
form. Special attention is usually paid to the cases � = 0, �/2 since,
according to Eqs. (4.6) and (4.7), the modulus squared of the abcd
transform in Eq. (4.24) and its FT are then obtained, respectively.

1. Coherent propagation through a (cylindrical) thin lens. In this
case the associated M matrix for the transformation of the light
field is given by

ML =
(

1 0
1

� f 1

)
(4.29)

with f being the focal length of the lens. Thus, the RWT for the
transformed amplitude light distribution is given in this case by

RWg(x�, �) ∝ RWf
(

x�′ , �′) , tan �′ = −� f
tan �

tan � − � f
,

x�′ = x�

sin �
sin �′ (4.30)
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A careful calculation for the case of � = 0 leads to

RWg(x0, 0) = |g(x0)|2 ∝ RWf (x0, 0) (4.31)

while for the value � = �/2 the following result is obtained

RWg

(
x�/2,

�

2

)
∝ RWf

(
x�/2 sin �′, �′) , tan �′ = −� f

(4.32)

Note that the effect of this propagation through a thin lens of
focal length f is also physically equivalent to the illumination of
the incident light distribution by a spherical wavefront whose
focus is located at a distance � = f from the input plane. Thus,
the same results discussed here can be applied straightforwardly
to that case.

2. Free-space (Fresnel) propagation. If we consider now the Fres-
nel approximation for the propagation of a transverse coherent
light distribution f (x) by a distance z, namely,

g (x) =
+∞∫

−∞
f (x′) exp

[
i�

�z
(x′ − x)2

]
dx′ (4.33)

the transformation matrix M is given by

MF =
(

1 −�z

0 1

)
(4.34)

and, therefore, the transformed RWT can be calculated through
the expression

RWg(x�, �) ∝ RWf (x�′ , �′), tan �′ = tan � − �z,

x�′ = x�

sin � + �z cos �
sin �′ (4.35)

For the projection with � = 0, one obtains

RWg(x0, 0) = |g(x0)|2 ∝ RWf (x�′ , �′), tan �′ = −�z,

x�′ = x0

�z
sin �′ (4.36)

and for the orthogonal projection � = �/2 the following result
is achieved

RWg

(
x�/2,

�

2

)
∝ RWf

(
x�/2,

�

2

)
(4.37)
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3. Magnifier. If a uniform scale factor m is applied to the input
function, the associated M matrix is given by

Mm =
(

1
m 0

0 m

)
(4.38)

In this case, the RWT is transformed according to the law

RWg(x�, �) ∝ RWf (x�′ , �′), tan �′ = 1
m2 tan �,

x�′ = mx�

sin �
sin �′ (4.39)

The vertical and horizontal projections are given here simply by
the following formulas.

RWg(x0, 0) = |g(x0)|2 ∝ RWf

( x0

m
, 0

)
(4.40)

RWg

(
x�/2,

�

2

)
∝ RWf

(
mx�/2,

�

2

)

4.2.2 Optical Implementation of the RWT:
The Radon-Wigner Display

Like any other phase-space function, the RWT also enables an optical
implementation that is desirable for applications in the analysis and
processing of optical signals. The correct field identification requires
a large number of Wigner distribution projections, which raises the
necessity to design flexible optical setups to obtain them. The rela-
tionship between the RWT and the FrFT, expressed mathematically
by Eq. (4.19), suggests that the optical computation of the RWT is pos-
sible directly from the input function, omitting the passage through
its WDF. In fact, the RWT for a given projection angle is simply the in-
tensity registered at the output plane of a given FrFT transformer. For
one-dimensional signals, the RWT for all possible projection angles
simultaneously displays a continuous representation of the FrFT of a
signal as a function of the fractional Fourier order p, and it is known
as the Radon-Wigner display (RWD). This representation, proposed by
Wood and Barry for its application to the detection and classification
of linear FM components,1 has found several applications in optics as
we will see later in this chapter.

Different and simple optical setups have been suggested to im-
plement the FrFT, and most have been the basis for designing other
systems to obtain the RWD. The first one described in the literature, de-
signed to obtain the RWD of one-dimensional signals, was proposed
by Mendlovic et al.4 It is based on Lohmann’s bulk optics systems
for obtaining the FrFT.5 In this method, the one-dimensional input
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function is converted to a two-dimensional object by the use of cylin-
drical lenses to allow the construction of a multichannel processor that
optically implements the calculations of the RWD. The setup consists
of three phase masks separated by fixed distances in free space. The
masks consist of many strips, each one representing a different chan-
nel that performs an FrFT with a different order over the input signal.
Each strip is a Fresnel zone plate with a different focal length that is
selected for obtaining the different fractional orderp. Thus, the main
shortcoming of the RWD chart produced by this setup is that it has a
limited number of projection angles (or fractional orders). Besides the
very poor angular resolution, the experimental results obtained in the
original paper are actually very far from the theoretical predictions.

A truly continuous display, i.e., a complete RWD setup, was pro-
posed by Granieri et al.6 This approach is based on the relationship
between the FrFT and Fresnel diffraction,7,8 which establishes that
every Fresnel diffraction pattern of an input object is univocally
related to a scaled version of a certain FrFT of the same input. There-
fore, if the input function f (x) is registered in a transparency with
amplitude transmittance t(x/s), with s being the construction scale
parameter, then the FrFT of the input can be optically obtained by
free-space propagation of a spherical wavefront impinging on it.
Actually, the Fresnel diffraction field U(x, Rp) obtained at distance
Rp from the input, which is illuminated with a spherical wavefront
of radius z and wavelength �, is related to the FrFT of order p of the
input function F p {t (x) , �} as follows.9

U(x, Rp) = exp
{

i�x2

�

[
z(1 − Mp) − Rp

z Rp M2
p

]}
F p

{
t
(

x′

Mp

)
, x

}
(4.41)

where Mp is the magnification of the optical FrFT. For each fractional
order, the values of Mp and Rp are related to the system parameters
s, �, and z through

Rp = s2�−1 tan( p�/2)
1 + s2(z�)−1 tan( p�/2)

, (4.42)

Mp = 1 + tan( p�/2) tan( p�/4)
1 + s2(z�)−1 tan( p�/2)

(4.43)

These last equations allow us to recognize that by illumination of an
input transparency with a spherical wavefront converging to an axial
point S, all the FrFTs in the range [0, 1] can be obtained simultaneously,
apart from a quadratic-phase factor and a scale factor. The FrFTs are
axially distributed between the input transparency plane ( p = 0) and
the virtual source (S) plane ( p = 1) in which the optical FT of the input
is obtained. For one-dimensional input signals, instead of a spherical
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FIGURE 4.3 Implementation of the FrFT by free-space propagation.

wavefront, we can use a cylindrical one to illuminate the input
(see Fig. 4.3).

Keeping in mind Eq. (4.19), we see the next step is to obtain the
RWD from this setup. To do this, we have to find an optical element to
form the image of the axially distributed FrFT channels, at the same
output plane simultaneously. Therefore, the focal length of this lens
should be different for each fractional order p. Since in this case the
different axially located FrFTs present no variations along the vertical
coordinate, we can select a different one-dimensional horizontal slice
of each one and use it as a single and independent fractional-order
channel. (see Fig. 4.4).

The setup of Fig. 4.4 takes advantage of the one-dimensional na-
ture of the input, and it behaves as a multichannel parallel FrFT trans-
former, provided that the focal length of the lens L varies with the y
coordinate in the same way as it varies withp. In this way, the problem
can be addressed as follows. For each value of p (vertical coordinate
y) we want to image a different object plane at a distance a p from the
lens onto a fixed output plane located at a ′ from the lens. To obtain this
result, it is straightforward to deduce from the Gaussian lens equation
and from the distances in Fig. 4.4 that it is necessary to design a lens
with a focal length that varies with p (vertical coordinate y) according
to

f ( p) = a ′a p

a ′ + a p
= a ′l + (1 + lz−1)a ′s2�−1 tan( p�/2)

a ′ − l − (a ′ + l + z)z−1s2�−1 tan( p�/2)
(4.44)

On the other hand, this focal length should provide the exact magnifi-
cation at each output channel. The magnification given by the system
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for each fractional order p is

ML ( p) = −a ′

a p
= a ′

s2�−1 tan( p�/2)
1+s2(z�)−1 tan( p�/2) − l

(4.45)

However, for the p-order slice of the RWT of the input function to be
achieved, the lens L should counterbalance the magnification of the
FRT located at Rp to restore its proper magnification at the output
plane. Therefore, by using Eq. (4.43), the magnification provided by
L should be

ML ( p) = −1
Mp

= − 1 + s2(z�)−1 tan( p�/2)
1 + tan( p�/2) tan( p�/4)

(4.46)

Comparing Eqs. (4.45) and (4.46), we note that the functional depen-
dence of both equations on p is different, and, consequently, we are
unable to obtain an exact solution for all fractional orders. However,
an approximate solution can be obtained by choosing the parameters
of the system, namely, s, z, l, �, and a ′, in such a way that they mini-
mize the difference between these functions in the interval p ∈ [0, 1].
One way to find the optimum values for these parameters is by a least-
squares method. This optimization6leads to the following constraint
conditions

a ′ = l
(

1
2

+ �

4

)
, z = −ls2

�l + s2 (4.47)
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FIGURE 4.5 Focal length (solid curve) and optical power (dotted curve) of
the designed varifocal lens L for the values z = 426 mm, l = 646 mm, and
a = 831 mm.

The variation of the focal distance of the lens L with p according to
Eq. (4.44) and its optical power, under the constraints given by Eqs.
(4.47), are represented in Fig. 4.5 for the following values: z = 426 mm,
l = 646 mm, and a = 831 mm.

For this particular combination of parameters, the optical power is
nearly linear with p, except for values close to p = 1. This linearity
is also accomplished by some designs of ophthalmic progressive ad-
dition lenses in which there is a continuous linear transition between
two optical powers that correspond to the near portion and distance
portion. In the experimental verification of the system, a progressive
lens of +2.75 D spherical power and +3 D of addition was used in the
setup of Fig. 4.4 with the above-mentioned values for the parameters
z, l, and a . Figure 4.6 illustrates a comparison between the numerical
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FIGURE 4.6 RWD of a Ronchi grating of 3 lines/mm: (a) exact numerical
simulation; (b) experimental result.
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simulations and the experimental results obtained using a Ronchi
grating as input object.

Interestingly, in Fig. 4.6 the values of p that correspond to the self-
images, both positive and negative, can be clearly identified. The op-
tical setup designed for the experimental implementation of the RWD
was successfully adapted to several applications, as we show later in
this chapter.

In searching for an RWD with an exact scale factor for all the frac-
tional orders, this approach also inspired another proposal10 in which
a bent structure for the detector was suggested. The result is an exact,
but unfortunately impractical, setup to obtain the RWD. This draw-
back was partially overcome in other configurations derived by the
same authors using the abcd matrix formalism. There, the free propa-
gation distances are designed to be fixed or to vary linearly with the
transverse coordinate,11 so the input plane and/or the output plane
should be tilted instead of bent, resulting in a more realistic configu-
ration, provided that the tilt angles are measured very precisely.

4.3 Analysis of Optical Signals and Systems
by Means of the RWT
4.3.1 Analysis of Diffraction Phenomena
4.3.1.1 Computation of Irradiance Distribution

along Different Paths in Image Space
Determination of the irradiance at a given point in the image space
of an imaging system is a classic problem in optics. The conventional
techniques carry out a finite partition of the pupil of the system to
sum all these contributions at the observation point.12–16 This time-
consuming procedure needs to be completely repeated for each ob-
servation point, or if the aberration state of the system changes. In this
section we present a useful technique, based on the use of the RWT
of a mapped version of the pupil of the system, for a much more effi-
cient analysis of the irradiance in the image space of imaging systems.
This technique has been successfully applied to the analysis of dif-
ferent optical systems with circular17 as well as square,18 elliptical,19

triangular,19 and even fractal pupils.20 The method has also been ap-
plied to the study of multifacet imaging devices.21

Let us consider a general imaging system, characterized by an exit
pupil function with generalized amplitude transmittance P(�x). The
distance from this pupil to the Gaussian imaging plane is denoted
by f . Note that the function P(�x) includes any arbitrary amplitude
variation p(�x) and any phase aberration that the imaging system may
suffer from.
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FIGURE 4.7 The imaging system under study.

We now describe the monochromatic scalar light field at any point
of the image space of the system in the Fresnel approximation21. It is
straightforward to show that, within this approach, the field irradiance
is given by

I (�x, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣
∫∫

�P

P(�x′) exp
[ −i�z|�x′|2

� f ( f + z)

]
exp

[ −i2�

�( f + z)
�x · �x′

]
d2�x′

∣∣∣∣∣∣
2

(4.48)

where � is the field wavelength, �x and z stand for the transverse and
axial coordinates of the observation point, respectively, and �P rep-
resents the pupil plane surface. The origin for the axial distances is
fixed at the axial Gaussian point, as shown in Fig. 4.7.

It is convenient to express all transverse coordinates in normalized
polar form, namely,

x = arN cos 	, y = arN sin 	 (4.49)

where x and y are Cartesian coordinates and a stands for the maxi-
mum radial extent of the pupil. By using these explicit coordinates in
Eq. (4.48), we obtain

Ī (rN, 	, z)

= 1
�2( f + z)2

∣∣∣∣∣∣
2�∫

0

1∫
0

p̄(r ′
N, 	′) exp

[
i2�W(r ′

N, 	′)
�

]
exp

[
i2�W20(z) r ′

N
2

�

]

× exp
[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

r ′
N dr ′

N d	′
∣∣∣∣
2

(4.50)
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where the bar denotes the polar coordinate expression for the corre-
sponding function and where we have split out the generalized pupil
P(�x) to explicitly show the dependence on the amplitude pupil vari-
ations p(�x) and the aberration function W(r ′

N, 	′) of the system. The
classic defocus coefficient has also been introduced in this equation,
namely,

W20(z) = − za2

2 f ( f + z)
(4.51)

In many practical situations the most important contribution to the
aberration function is the primary spherical aberration (SA), whose de-
pendence on the pupil coordinates is given by

W40(r ′
N, 	′) = W40r ′

N
4 (4.52)

where W40 is the SA coefficient design constant. In the following rea-
soning, we will consider this term explicitly, splitting the generalized
pupil of the system as follows:

p̄(r ′
N, 	′) exp

[
i2�W(r ′

N, 	′)
�

]
= Q(r ′

N, 	′) exp
[

i2�W40 r ′
N

4

�

]
(4.53)

Thus Q(r ′
N, 	′) includes the amplitude variations on the pupil plane

and the aberration effects except for SA. Note that if no aberrations
different from SA are present in the system, Q(r ′

N, 	′) reduces simply
to the pupil mask p̄(r ′

N, 	′).
By substituting Eq. (4.53) into Eq. (4.50), we finally obtain

Ī (rN, 	, z)

= 1
�2( f + z)2

∣∣∣∣∣∣
2�∫

0

1∫
0

Q(r ′
N, 	′) exp

(
i2�W40 r ′

N
4

�

)
exp

[
i2�W20(z) r ′

N
2

�

]

× exp
[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

r ′
N dr ′

N d	′
∣∣∣∣
2

(4.54)

Let us now consider explicitly the angular integration in this equation,
namely,

Q(r ′
N, rN, 	, z) =

2�∫
0

Q(r ′
N, 	′) exp

[ −i2�

�( f + z)
r ′

NrN cos(	′ − 	)
]

d	′

(4.55)
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Thus we arrive at a compact form for the irradiance at a point in the
image space

Ī (rN, 	, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣

1∫
0

Q(r ′
N, rN, 	, z) exp

(
i2�W40 r ′

N
4

�

)
exp

[
i2�W20(z) r ′

N
2

�

]
r ′

N dr ′
N

∣∣∣∣∣∣
2

(4.56)

By using the mapping transformation

r ′
N

2 = s + 1
2

, Q(r ′
N, rN, 	, z) = q (s, rN, 	, z) (4.57)

we finally obtain

Ī (rN, 	, z) = 1
�2( f + z)2

×
∣∣∣∣∣∣

0.5∫
−0.5

q (s, rN, 	, z) exp
(

i2�W40 s2

�

)
exp

{
i2�[W40 + W20(z)] s

�

}
ds

∣∣∣∣∣∣
2

(4.58)

Note that in this expression all the dependence on the observation
coordinates is concentrated in the mapped pupil q (s, rN, 	, z) and the
defocus coefficient W20(z). If we expand the modulus square in this
equation, we find

Ī (rN, 	, z) = 1
�2( f + z)2

×
0.5∫

−0.5

0.5∫
−0.5

q (s, rN, 	, z)q∗(s ′, rN, 	, z) exp
[

i2�W40 (s2 − s ′2)
�

]

× exp
{

i2� [W40 + W20(z) ] (s − s ′)
�

}
ds ds ′ (4.59)

which by using the change of variables

t = s + s ′

2
, u = s − s ′ (4.60)
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can be rewritten as

Ī (rN, 	, z) = 1
�2( f + z)2

×
1∫

−1

0.5∫
−0.5

q
(

t + u
2

, rN, 	, z
)

q∗
(

t − u
2

, rN, 	, z
)

× exp
{

i2�

�
[W40 + W20(z) + 2�W40] u

}
dt du (4.61)

The above integration over the variable u can be clearly identified as
the WDF of q (s, rN, 	, z) with respect to the first variable, as stated in
Eq. (4.1). Thus, it is straightforward to show that

Ī (rN, �, z) = 1
�2( f + z)2

0.5∫
−0.5

Wq

(
t, −2

W40

�
t − W40 + W20(z)

�

)
dt

(4.62)

This expression relates the irradiance at any observation point to the
line integral of the function Wq (x, �) along a straight line in phase
space described by the equation

� = −2
W40

�
x − W40 + W20(z)

�
(4.63)

as depicted in Fig. 4.8. One can identify this integration as a projection
of the WDF at an angle � given by [see Eq. (4.10)]

tan � = − �

2W40
(4.64)

FIGURE 4.8 Integration line in phase space.
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and at an oriented distance from the origin

x�(z) = − W40 + W20(z)√
4W2

40 + �2
(4.65)

in such a way that it is possible to express

Ī (rN, �, z) = 1
�2( f + z)2 RWq (x�(z), �) (4.66)

The main conclusion of all this is that it is possible to obtain the ir-
radiance at any point in image space through the values of the RWT
of a given function q (s, rN, 	, z) related to the pupil of the system.
Note, however, that this function depends in general on the particular
coordinates rN, 	, and z of the observation point. Thus, a different
function RWq (x�, �) has to be considered for different points in image
space. This major drawback can be overcome for special sets of points
or trajectories in image space that share the same associated mapped
pupil q (s, rN, 	, z).

To describe such trajectories in image space, let us express these
lines in parametric form rN(z), 	(z). By substituting Jacobi’s identity

exp(i
 cos �) =
+∞∑

n=−∞
in Jn(
) exp (−in�) 
, � ∈ R (4.67)

where Jn(x) represents the Bessel function of the first kind and order
n, into Eq. (4.55), it is straightforward to obtain

Q(r ′
N, rN(z), 	(z), z) =

+∞∑
n=−∞

in Jn

( −2�

�( f + z)
r ′

NrN(z)
)

Qn(r ′
N)

× exp [in	(z)] (4.68)

where Qn(r ′
N) stands for the n-order circular harmonic of Qn(r ′

N, 	′),
that is,

Qn(r ′
N) =

2�∫
0

Q(r ′
N, 	′) exp

(−in	′) d	′ (4.69)

Note that the dependence on the position parameter z in Eq. (4.68)
is established exclusively in the argument of the Bessel functions—
through rN(z)—and the phase exponentials—through 	(z). Thus, the
only way to strictly cancel this dependence is to consider the trajecto-
ries

rN(z) = K ( f + z), 	(z) = 	o (4.70)
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FIGURE 4.9 Trajectories in image space.

These curves correspond to straight lines passing through the axial
point at the plane of the exit pupil. Together with the optical axis,
each line defines a plane that forms an angle 	o with the x axis, as
depicted in Fig. 4.9. Note that the angle � of any of these lines with
the optical axis is given by

tan � = K a (4.71)

For these subsets of observation points, the mapped pupil of the sys-
tem can be expressed as

Q(r ′
N, rN(z), 	(z), z) = Q�,	o (r ′

N)

=
+∞∑

n=−∞
in Jn

(−2�a tan �

�
r ′

N

)
Qn(r ′

N) exp (in	o )

(4.72)

and analogously

r ′
N

2 = s + 1
2

, q (s, rN(z), 	(z), z) = Q�,	o (r ′
N) = q �,	o (s) (4.73)

in such a way that now the corresponding RWT RWq �,�o (x�, �) is in-
dependent of the propagation parameter z. This is a very interest-
ing issue since the calculation of the irradiance at any observation
point lying on the considered line can be achieved from this single
two-dimensional display by simply determining the particular co-
ordinates (x�(z), �) through Eqs. (4.64) and (4.65). Furthermore, the
proper choice of these straight paths allows one to obtain any desired
partial feature of the whole three-dimensional image irradiance distri-
bution. Note also that since W40 is just a parameter in these coordinates
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and does not affect the function RWq �,�o (x�, �), this single display can
be used for the determination of the irradiance for different amounts
of SA. Thus, compared to classic techniques, the reduction in compu-
tation time is evident. The axial irradiance distribution is often used
as a figure of merit for the performance of optical systems with aberra-
tions. This distribution can be obtained here as a particular case with
� = 0, namely,

I (0, 0, z) = 1
�2( f + z)2 RWq 0,0 (x�(z), �) (4.74)

where

q 0,0(s) = Q0,0(r ′
N) = Q0(r ′

N) (4.75)

This result is especially interesting since this mapped pupil, and thus
the associated RWT, is also independent of the wavelength �. This fact
represents an additional advantage when a polychromatic assessment
of the imaging system is needed, as will be shown in forthcoming
sections. Some quantitative estimation of these improvements is pre-
sented in Ref. 19.

To prove the performance of this computation method, next we
present the result of the computation of the irradiance distribution
along different lines in image space of two imaging systems, la-
beled system I and system II. For the sake of simplicity, we consider
only purely absorbing pupils and no aberrations apart from SA in
both cases. Thus, Q(r ′

N, 	′) reduces to the normalized pupil function
p̄(r ′

N, 	′). A gray-scale representation for the pure absorbing masks
considered for each system is shown in Fig. 4.10.

pI( x )→

x

y

a x

ypII( x )→

2a/3

a

(b)(a)

FIGURE 4.10 Gray-scale picture of the pupil functions for (a) system I and
(b) system II.
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FIGURE 4.11 Irradiance values provided by system I, along different lines
containing the axial point of the pupil and for two different amounts of SA.
Continuous lines represent the result by the proposed RWT method while
dotted lines stand for the computation by the classic method.

We compute the irradiance values for 256 points along three differ-
ent lines passing through the axial point of the pupil, all characterized
by an azimuthal angle 	o = �/2. These trajectories are chosen with
tilt angles � = 0.024◦, 0.012◦ and 0◦ (optical axis). We set a = 10 mm,
z = 15.8 mm, and � = 638.2 nm. The function RWq �,�o (x�, �) was com-
puted for 4096 × 4096 points, and for comparison purposes, the same
irradiance values were computed by using the classic method12,13

by partitioning the exit pupil of the imaging system into 1024×1024
radial-azimuthal elements. Figure 4.11 shows a joint representation of
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FIGURE 4.12 Irradiance values provided by system II, as in Fig. 4.11.

the numerical calculation for system I, when two different values of
the SA are considered. The same results applied now to system II are
presented in Fig. 4.12.

The analysis of these pictures shows that the results obtained with
the RWT method match closely those obtained with the classic tech-
nique. In fact, both results differ by less than 0.03 percent. However,
the RWT is much more efficient in this computation process. This is
so because the basic RWT does not require recalculation for any point
in each of the curves. This is also true for any amount of SA. Obvi-
ously, the greater the number of observation points, or SA values, that
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have to be considered, the greater the resultant savings in computation
time.

As a final remark on this subject, we want to point out that this
approach can also be applied to other trajectories of interest in im-
age space. For instance, short paths parallel to the optical axis in the
neighborhood of the focal plane17 or straight lines crossing the focal
point can be considered.22

4.3.1.2 Parallel Optical Display of Diffraction Patterns
In Sec. 4.2.2 we mentioned that the mathematical relationship be-
tween Fresnel diffraction and the FrFT is given by Eq. (4.41). This
means that the RWD is itself a continuous display of the evolution
of diffraction patterns of one-dimensional objects, and this property
is extremely useful from a pedagogical point of view. In fact, calcu-
lations of Fresnel and Fraunhofer diffraction patterns of uniformly
illuminated one-dimensional apertures are standard topics in under-
graduate optics courses. These theoretical predictions are calculated
analytically for some typical apertures, or, more frequently, they are
computed numerically. The evolution of these diffraction patterns un-
der propagation is often represented in a two-dimensional display of
gray levels in which one axis represents the transverse coordinate—
pattern profile—and the other axis is related to the axial coordinate—
evolution parameter.23 This kind of representation illustrates, e.g.,
how the geometrical shadow of the object transforms into the Fraun-
hofer diffraction pattern as it propagates, and that the Fraunhofer
diffraction simply is a limiting case of Fresnel diffraction.24 In addi-
tion to the qualitative physical insight that the RWD provides about
diffraction, it can provide a quantitative measurement of a variety of
terms. These include the precise location ys and the relative magnifica-
tion Ms of each diffraction pattern. These two terms are quantitatively
defined in terms of the maximum �h and minimum �0 powers of the
varifocal lens L of the system represented in Fig. 4.5, i.e.,

ys = hs
s + l2(�h − �0)

, Ms = 1 + s
l2(�h − �0)

(4.76)

where s is the axial coordinate at which the corresponding diffraction
pattern is localized under parallel illumination and h is the extent of
the so-called progression zone of the varifocal lens. Figure 4.13 illus-
trates the experimental results registered by a CCD camera using a
double slit as an input object. It can be seen that the RWD is a nice
representation of the evolution by propagation of the interference phe-
nomena. In fact, the Fraunhofer region of the diffracted field clearly
shows the characteristic Young fringes modulated by a sinc function.
To compare the theoretical and experimental results, a cross section of
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FIGURE 4.13 RDW showing the evolution of the field diffracted by a double
slit. (a) Experimental result. (b) Cross section of the RWD showing the
intensity profile near the Fraunhofer region. For comparison purposes, the
theoretical sinc envelope of the Young fringes is also shown by the dotted
line.

the experimental RWD for values of y/h close to 1 is also represented
in Fig. 4.13.

Another classic example is diffraction by periodic objects. Here,
self-imaging phenomena, such as the Talbot effect, are interesting and
stimulating and usually attract the students’ attention. As illustrated
earlier in Fig. 4.6, which shows the diffraction patterns of a Ronchi
grating, several self-imaging planes can be identified. It can be clearly
seen that, due to the finite extent of the grating at the input, the number
of Talbot images is limited by the so-called walk-off effect. Self imag-
ing phenomena are discussed in more detail in Chapter 9 by Markus
Testorf.

In addition to its use as an educational tool for displaying diffrac-
tion patterns, the RWD has been used to investigate diffraction by a
variety of different interesting structures including fractal diffraction
screens. In fact, the properties of diffraction patterns produced by frac-
tal objects and their potential applications have attracted the attention
of several researchers during recent years because many natural phe-
nomena and physical structures, such as phase transition, turbulence,
or optical textures, can be analyzed and described by assuming fractal
symmetry. Most research has been devoted to the study of diffraction
patterns obtained from fractal objects in the Fraunhofer region,25 yet it
is in the Fresnel region where interesting features appear. For instance,
Fresnel diffraction of a Cantor set26 shows an irradiance distribution
along the optical axis having a periodicity that depends on the level of
the set. Furthermore, the intensity distributions at transverse planes
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FIGURE 4.14 RWD as a display of all diffraction patterns generated by a
Cantor grating of level 3.

show a partial self-similar behavior that is increased when moving to-
ward the Fraunhofer region. For this reason, it is useful to represent the
evolution of the complex amplitude of one-dimensional fractals prop-
agating through free space represented on a two-dimensional display,
especially if such a display can be obtained experimentally. In this case
one axis represents the transversal coordinate, and the other is a func-
tion of the axial coordinate. In fact, according to the analysis carried
out in Ref. 27, the evolution of the diffraction patterns allows one to
determine the main characteristic parameters of the fractal. Therefore,
one of the most important applications of the RWD has been in this
field.28 The RWD obtained for a triadic Cantor grating developed up
to level 3 is shown in Fig. 4.14. Moreover, this result can be favor-
ably compared with the results obtained with other displays.27 The
magnification provided by the lens L in the experimental setup (see
Fig. 4.4) enables the RWD representation to provide an optimum sam-
pling of the diffracted field. Near the object, where the diffraction pat-
terns change rapidly, the mapping of the propagation distance pro-
vides a fine sampling, whereas the sampling is coarse in the far field
where the variation of the diffraction patterns with the axial distance
is slow. We note that sampling is the subject of Chapter 10.

4.3.2 Inverting RWT: Phase-Space Tomographic
Reconstruction of Optical Fields

The WDF is an elegant and graphical way to describe the propagation
of optical fields through linear systems. Since the WDF of a complex
field distribution contains all the necessary information to retrieve the
field itself,29,30 many of the methods to obtain the WDF (and the AF)
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1D signal Radon Wigner
spectrum

Inverse RT
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RWf (x, θ) Wf (x, ξ)

WDF

RWT = ⎜FrFT ⎜2

FIGURE 4.15 Diagram of the proposed hybrid optodigital method.

could be adapted to solve the phase retrieval problem. Optical or opto-
electronic devices are the most commonly employed systems to obtain
a representation of phase-space functions of one-dimensional or two-
dimensional complex signals.31,32 However, because most detectors
used to this end are only sensitive to the incident intensity, interfero-
metric or iterative methods are necessary in general to avoid loss of
information. This is true even for the optically obtained WDF, which
is real but has, in general, negative values and therefore is obtained
from an intensity detector with an uncertainty in its sign. On the other
hand, obtaining the WDF of wave fields is also possible indirectly
through other representations such as the Radon transform.33 In this
particular case, a tomographic reconstruction is needed to synthesize
the WDF. With this information it is possible to recover the ampli-
tude and the phase of the original field distribution solely by means
of intensity measurements. With most experimental setups for phase
retrieval,29,30 these measurements have to be taken sequentially in
time while varying the distances between some components in each
measurement. In this way the potential advantage of optics, i.e., paral-
lel processing of signal information, is wasted. Consequently, another
interesting application of the setup discussed in Sec. 4.2.2 to obtain the
RWD is the experimental recovery of the WDF by means of an inverse
Radon transformation.

The technique to obtain the WDF from projections is divided into
two basic stages, sketched in Fig. 4.15. In the first stage, the experimen-
tal Radon-Wigner spectrum of the input function is obtained from a
two-dimensional single-shot intensity measurement by the use of the
experimental setup in Fig. 4.4. This optical method benefits from hav-
ing no moving parts.

The second part of the proposed method is the digital computation
of the inverse Radon transforms of the experimental Radon-Wigner
spectrum. The most common algorithms used in tomographic recon-
struction are based on the technique known as filtered backprojec-
tion. This algorithm is based on the central slice theorem discussed in
Sec. 4.2.1. Thus, from Eqs. (4.21) and (4.22) we have

F{RWf (x�, �), ��} = F2D{Wf (x, �), (x� cos �, �� sin �)} (4.77)
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FIGURE 4.16 Experimental Radon-Wigner spectrum of (a) a single slit of
2.2 mm and (b) a binary grating with a linearly increasing spatial frequency.

where the one-dimensional FT is performed on the first argument
of RWf (x�, �). The inversion of this last transformation allows the
recovery of Wf (x, �) from its projections. Explicitly34

Wf (x, �) =
�∫

0

C f (x cos � + � sin �, �) d� (4.78)

with

C f (u, �) =
+∞∫

−∞
F{RWf (x�, �), ��} |��| exp (i2���u) d�� (4.79)

Equation (4.79) can be clearly identified as a filtered version of the
original RWT. In this way, from Eq. (4.78), Wf (x, �) is reconstructed
for each phase-space point as the superposition of all the projections
passing through this point.

The experimental RWD of different one-dimensional functions has
been used to reconstruct the WDF from projections. In Fig. 4.16 we
show the RWD obtained with the optical device described in Sec. 4.2.2
for two different functions, namely, a rectangular aperture (single slit)
and a grating with a linearly increasing spatial frequency (chirp signal).

To undertake the reconstruction of the WDF through the filtered
backprojection algorithm, it is necessary to consider the complete an-
gular region of the RWD, that is, � ∈ [0, �). Although we only obtain
optically the RWT for � ∈ [0, �/2], the symmetry property in Eq. (4.17)
has been used to complete the spectrum. From the experimental RWD
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FIGURE 4.17 (a) Theoretical WDF of a single slit. (b) Experimental result for
the tomographic reconstruction of the WDF of the same slit.

in Fig. 4.16, the corresponding WDFs have been obtained using the
filtered backprojection algorithm. For comparison purposes, Figs. 4.17
and 4.18 show both the theoretical and the experimentally recon-
structed WDF of the single slit and the chirp grating, respectively.
Note that in Figs. 4.17b and 4.18b some artifacts appear. The lines radi-
ating from the center and outward are typical artifacts (ringing effect)
associated with the filtered backprojection method.35 In spite of this
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FIGURE 4.18 (a) Theoretical WDF of a binary grating with a linearly
increasing spatial frequency. (b) Experimental tomographic reconstruction of
the WDF of the same grating.
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effect, a very good qualitative agreement can be observed between
the results obtained with the theoretical and experimental data. The
asymmetry in Fig. 4.17 is a consequence of the noise in Fig. 4.16a, re-
flecting also the asymmetry on the spatial coordinate in this figure.
In Fig. 4.18 the typical arrow-shaped WDF of a chirp function can be
observed in both cases. The slope in the arrowhead that character-
izes the chirp rate of the signal is the same for the theoretical and the
experimental results.

Several extensions of the proposed method are straightforward. On
one hand, a similar implementation proposed here for the WDF can be
easily derived for the AF, by virtue of Eq. (4.22). Note also that it is easy
to extend this method to obtain two-dimensional samples of the four-
dimensional WDF of a complex two-dimensional signal by use of a
line scanning system. Moreover, since complex optical wave fields can
be reconstructed from the WDF provided the inversion formulas, this
approach can be used as a phase retrieval method that is an alterna-
tive to the conventional interferometric or iterative-algorithm-based
techniques. In fact, as demonstrated,36 phase retrieval is possible with
intensity measurements at two close FrFT domains. This approach,
however, requires some a priori knowledge of the signal bandwidth.
In our method, a continuous set of FrFTs is available simultaneously,
and this redundancy should avoid any previous hypothesis about the
input signal.

4.3.3 Merit Functions of Imaging Systems
in Terms of the RWT

4.3.3.1 Axial Point-Spread Function (PSF) and Optical
Transfer Function (OTF)

There are several criteria for analyzing the performance of an opti-
cal imaging system for aberrations and/or focus errors in which the
on-axis image intensity, or axial point-spread function (PSF), is the
relevant quantity. Among them we mention:37 Rayleigh’s criterion,
Marechal’s treatment of tolerance, and the Strehl ratio (SR). As Hop-
kins suggested,38 the analysis of Marechal can be reformulated to give
a tolerance criterion based on the behavior of the optical transfer func-
tion (OTF) (spatial frequency information) instead of the PSF (space
information). Phase-space functions were also employed to evaluate
some merit functions and quality parameters.39–41 This point of view
equally emphasizes both the spatial and the spectral information con-
tents of the diffracted wave fields that propagate in the optical imaging
systems. Particularly, since the information content stored in the FrFT
of an input signal changes from purely spatial to purely spectral as
p varies from p = 0 to p = 1, that is, in the domain of the RWT, it
is expected that the imaging properties of a given optical system, in
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both the space and spatial frequency domains, could also be evaluated
from the RWD.

To derive the formal relationship between the PSF (and the OTF)
and the RWT, let us consider the monochromatic wave field, with
wavelength �, generated by an optical imaging system characterized
by a one-dimensional pupil function t(x), when a unit amplitude point
source is located at the object plane.In the neighborhood of the image
plane, located at z = 0, the field amplitude distribution can be written,
according to the Fresnel scalar approximation, as

U (x, z) =
+∞∫

−∞
t(x′) exp

(−i�

� f
x′2

)
exp

[
i�

�( f + z)
(x′ − x)2

]
dx′

(4.80)

where f is the distance from the pupil to the image plane. The trans-
formation of t(x) to obtain the field U (x, z) is given by a two-step
sequence of elementary abcd transforms, namely, a spherical wave-
front illumination (with focus at � = f ) and a free-space propagation
(for a distance f + z). Considering the results presented in Sec. 4.2.1,
the abcd matrix associated with this transform can be found to be

M =
(

1 0
1

� f 1

)(
1 −�( f + z)

0 1

)
=

(
1 −�( f + z)
1

� f − z
f

)
(4.81)

and, therefore, the equivalent relationships to that given by Eq. (4.80)
in terms of the corresponding RWTs can be expressed as [see Eq. (4.25)]

RWU(x,z)(x�, �) ∝ RWt(x�′ , �′)
(4.82)

tan �′ = � f tan � − �2 f ( f + z)
tan � − �z

, x�′ = x�

sin � + �( f + z) cos �
sin �′

In particular, the value � = 0 provides the irradiance distribution at
the considered observation point, as stated in Sec. 4.2.1. This function
is the PSF of the imaging system, as a function of the distance z to the
image plane. Thus,

RWU(x,z)(x0, 0) = |U(x0, z)|2 = I (x0, z) ∝ RWt(x�′
0
, �′

0)
(4.83)

tan �′
0 = � f ( f + z)

z
, x�′

0
= x0

�( f + z)
sin �′

0

For the optical axis (x0 = 0) the PSF can be expressed as

RWU(x,z)(0, 0) = |U(0, z)|2 = I (0, z) ∝ RWt

(
0, arctan

[
� f ( f + z)

z

])
(4.84)
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A normalized version of this axial irradiance is often used as a figure
of merit of the performance of the imaging system, namely, the SR
versus defocus, defined as

S(W20) = I (0, z)
I (0, 0)

∝ RWt

(
0, arctan

(
− �h2

2W20

))
(4.85)

where h is the maximum lateral extent of the one-dimensional pupil
and W20 stands for the one-dimensional version of the defocus coeffi-
cient defined in Eq. (4.51). Thus, the function S(W20) can be analyzed in
a polar fashion in the two-dimensional domain of the WDF associated
with the pupil function t(x) or, equivalently, in terms of its associated
RWT.

To illustrate this approach, the defocus tolerance of different kinds
of one-dimensional pupils was investigated, namely, a clear aperture
(slit) and a pupil with a central obscuration (double slit). The general
form of these pupils can be written as t(x) = rect(x/h) − rect(x/b),
with b = 0 for the uniform aperture. Figure 4.19 shows the RWD
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FIGURE 4.19 RWTs: (a) Computer simulation for an aperture with
a = 2.5 mm and b = 0 mm. (b) Experimental result for (a). (c) Computer
simulation for an aperture with a = 2.5 mm and b = 1.3 mm. (d)
Experimental result for (c). The horizontal axis corresponds to the
parameterization of the projection angle � = p�/2.
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FIGURE 4.20 SR versus defocus for circular pupils with pupil function
t(x) = rect(x/h) − rect(x/b): (a) Computer simulation; (b) experimental
results. Again, the projection angle � = p�/2.

numerically (parts a and c) and experimentally (parts b and d) ob-
tained, for two different values of the obscuration b.

According to our previous discussion, the slices of the RWD for
x = 0 give rise to the SR for variable W20. These profiles are plotted
in Fig. 4.20 for three different pupils. From these results, it can be
observed that, as expected, annular apertures have higher tolerance
to defocus.

The knowledge of the SR is useful to characterize some basic fea-
tures of any optical system, such as the depth of focus. However, the
main shortcoming of the SR as a method of image assessment is that
although it is relatively easy to calculate for an optical design pre-
scription, it is normally difficult to measure for a real optical system.
Moreover, the quality of the image itself is better described through
the associated OTF. Fortunately, this information can also be obtained
from the RWD via its relationship with the AF established in Sec. 4.2.1,
since the AF contains all the OTFs H(�; W20) associated with the opti-
cal system with varying focus errors according to the formula42

H�(�; W20) = At

(
−�( f + z)�,

2W20( f + z)
h2 �

)
(4.86)

In this way, the AF of the pupil function t(x) can be interpreted as a
continuous polar display of the defocused OTFs of the system. Con-
versely,

At
(

x′, �′) = H�

(
− x′

�( f + z)
; W20 = −�h2�′

2x′

)
(4.87)
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FIGURE 4.21 Computed one-dimensional FT of the RWDs shown
in Fig. 4.19.

Thus, by using Eq. (4.22) it is easy to find that

F {RWt(x�, �), ��} = At (�� cos �, −�� sin �)

= H�

(
− �� cos �

�( f + z)
; W20 = �h2

2
tan �

)
(4.88)

Therefore, the one-dimensional FT of the profile of the RWD for a
given value of the fractional order � = p�/2 corresponds to a defo-
cused (scaled) OTF. This representation is quite convenient to visualize
Hopkins’ criterion.39

Figure 4.21 shows the one-dimensional Fourier transforms, taken
with respect to the x axis, of the RWT illustrated in Fig. 4.19. From
the previous analysis, the defocused OTFs are displayed along the
vertical or spatial-frequency axis. These results for the clear aperture
are shown in Fig. 4.22.

The RWD can also be used for calculating the OTF of an optical
system designed to work under polychromatic illumination. In this
case, as we will discuss next, a single RWD can be used to obtain the
set of monochromatic OTFs necessary for its calculation.
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FIGURE 4.22 OTFs obtained from different slices of the intensity
distributions shown in Fig. 4.21 for the case of a uniform aperture, for
different amount of defocus.

4.3.3.2 Polychromatic OTF
As stated above, the RWT associated with the one-dimensional pupil
of an imaging system can be used to obtain the OTF of the device,
as a function of the defocus coefficient, through Eq. (4.88). It is worth
noting that in this equation the wavelength � of the incoming light acts
as a parameter in the determination of the particular coordinates of the
FT of the RWT, but it does not affect the RWT itself. Thus, changing the
value of � simply resets the position inside the same two-dimensional
display for the computation of the OTF. The calculation procedure
used in the previous section can be used, therefore, to compute the
transfer function for any wavelength by means of the same RWD. This
approach is based on previous work, where it was shown that the AF
of the generalized pupil function of the system is a display of all the
monochromatic OTFs with longitudinal chromatic aberration.43

An especially interesting application of this technique is the eval-
uation of the spatial-frequency behavior of optical systems working
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under polychromatic evaluation. In fact, the proper generalization of
the OTF-based description to this broadband illumination case allows
one to define quality criteria for imaging systems working with color
signals.44,45 This extension presents, however, some difficulties. The
direct comparison of the incoming and the outgoing polychromatic
irradiance distributions does not allow, in general, a similar relation-
ship to the monochromatic case to be established. It can be shown,
in fact, that only when the input signal is spectrally uniform can the
frequency contents of both signals be related through a single poly-
chromatic OTF function, providing the imaging system does not suffer
from any chromatic aberrations regarding magnification.46,47 Under
these restrictions, a single polychromatic OTF can be used for relat-
ing input and output polychromatic irradiances in spatial-frequency
space. This function is defined as

H(�; W20) =

∫
�

H�(�; W′
20(�))S(�)V(�) d�∫

�

S(�)V(�) d�
(4.89)

where � and S(�) are the spectral range and the spectral power of the
illumination, respectively. The function V(�) represents the spectral
sensitivity of the irradiance detector used to record the image. Note
also that a new wavelength-dependent defocus coefficient has been
defined, to account for the longitudinal chromatic aberration W20(�)
that the system may suffer from, namely,

W′
20(�) = W20 + W20(�) (4.90)

where W20 is the defocus coefficient defined in the previous section.
This OTF cannot account, however, for the chromatic information

of the image, since only a single detector is assumed.48 Indeed, by fol-
lowing the trichromacy of the human eye, three different chromatic
channels are usually employed to properly describe color features in
irradiance distributions, and, consequently, three different polychro-
matic OTFs are used, namely,44,45

H(�; W20) =

∫
�

H�(�; W′
20(�))S(�)x� d�∫

�

S(�)x� d�

H(�; W20) =

∫
�

H�(�; W′
20(�))S(�)y� d�∫

�

S(�)y� d�
(4.91)

H(�; W20) =

∫
�

H�(�; W′
20(�))S(�)z� d�∫

�

S(�)z� d�
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where x�, y�, and z� are three spectral sensitivity functions associated
with the measured chromaticity. These functions depend, obviously,
on the specific color detector actually used. In the case of a conven-
tional digital color camera, these channels can be associated with the
R, G, and B bands of the three pixel families in the detector array.
On the other hand, when a visual inspection of the final image is
considered, these sensitivity functions are the well-known spectral
tristimulus values of the human eye.49

Equations (4.91) establish the formulas to describe completely the
response of a system from a spatial-frequency point of view. To
numerically compute the functions described there, the evaluation
of the monochromatic OTFs for a sufficient number of wavelengths
inside the illumination spectrum has to be performed. Since any of
these monochromatic transfer functions can be obtained from a same
single RWD, as stated in the previous section, these computations can
be done in a much more efficient way by use of this two-dimensional
display. Furthermore, the same imaging system (i.e., the same pupil
function) but suffering from different longitudinal chromatic aberra-
tion can be assessed as well, with no additional computation of the
RWD. This is a critical issue in the saving of computation time which
provides this technique with a great advantage compared to other
classic techniques, as cited above.

To illustrate this technique, we present the result of the computa-
tion of the polychromatic OTFs associated with a conventional one-
dimensional clear-pupil optical system (slit of width h) but suffering
from two different chromatic aberration states (systems I and II from
now on), as shown in Fig. 4.23. We assume that no other aberrations
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FIGURE 4.23 Longitudinal chromatic aberration coefficient associated with
the two different correction states of the system under study.
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FIGURE 4.24 Monochromatic OTFs for system I in Fig. 4.23, corresponding
to the imaging plane (W20 = 0).

are present. This assumption does not imply any restriction of the
method, and the same applies to the one-dimensional character of
the imaging system, as can be easily shown. Regarding the geometric
parameters of the system, we fixed h/ f = 0.2.

The evaluation of the corresponding monochromatic OTFs for
both aberration states is achieved through the same computation
method as in the previous section, namely, through the sequential one-
dimensional FT of the two-dimensional display of the RWT RWt(x�, �).
Some of these results are shown in Fig. 4.24.

The computation of the polychromatic OTFs is performed next for
both correction states, through the superposition of the monochro-
matic ones stated in Eqs. (4.91) for uniform sampling of 36 wave-
lengths in the range between 400 and 700 nm. The x�, y�, and z�

functions are set to be the spectral tristimulus values of the standard
human observer CIE 1931, while the spectral power for the illumi-
nation corresponds to the standard illuminant C49. The results for
system I, corresponding to a defocused plane, and for system II, at the
image plane, are shown in Fig. 4.25. Note that in both cases the same
RWD is used in the computation, as stated above.

4.3.3.3 Polychromatic Axial PSF
In this section we propose the use of a single two-dimensional RWD to
compute the axial irradiance in image space provided by an imaging
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FIGURE 4.25 Polychromatic OTFs for (a) system I and (b) system II in
Fig. 4.23, corresponding to a defocused plane (W20 = −0.28 �m) and image
plane, respectively.

system with polychromatic illumination. In fact, the proposed tech-
nique is a straightforward extension of what is stated in Sec. 4.3.1.1,
namely, that the axial irradiance distribution I (0, 0, z) provided by a
system with an arbitrary value of SA can be obtained from the single
RWT RWq 0,0 (x, �) of the mapped pupil q 0,0(s) in Eq. (4.75). When an
object point source is used, this irradiance distribution corresponds, of
course, to the on-axis values of the three-dimensional PSF of the imag-
ing system. For notation convenience we denote I�(z) = I (0, 0, z) in
this section.

According to the discussion in Sec. 4.3.3.2, the account for chro-
maticity information leads to a proper generalization of the monochro-
matic irradiances to the polychromatic case through three functions,
namely,

X(W20) =
∫
�

I�(z)S(�)x� d�

Y(W20) =
∫
�

I�(z)S(�)x� d� (4.92)

Z(W20) =
∫
�

I�(z)S(�)x� d�

where S(�), V(�), x�, y�, and z� stand for the magnitudes used in
the previous section. The defocus coefficient is defined in Eq. (4.51).
However, it is often more useful to describe a chromatic signal through
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a combination of these basic functions. A conventional choice for these
new parameters is the set

x (W20) = X(W20)
X(W20) + Y(W20) + Z(W20)

(4.93)

y (W20) = Y(W20)
X(W20) + Y(W20) + Z(W20)

known as chromaticity coordinates, along with the parameter Y(W20).
If the sensitivity functions are selected to be the spectral tristimulus
values of the human eye, the Y(W20) parameter is known as illumi-
nance and it is associated basically with the brightness of the chromatic
stimulus. On the other hand, in this case the chromaticity coordinates
provide a joint description for the hue and saturation of the colored
signal.49

Anyway, as in the previous section, the evaluation of these magni-
tudes requires the computation of the monochromatic components for
a sufficient number of spectral components. The use of conventional
techniques, as stated earlier, is not very efficient at this stage, since the
computation performed for a fixed axial point, a given wavelength,
and a given aberration state cannot be applied to any other configu-
ration. The method proposed in Sec. 4.3.1.1 represents a much more
efficient solution since all the monochromatic values of the axial ir-
radiance can be obtained, for different aberration correction states,
from a single two-dimensional display associated with the pupil of
the system.

To describe this proposal in greater detail, let us consider the system
presented in Fig. 4.9 with � = 0. According to the formulas in Sec.
4.3.1.1, the axial irradiance distribution in image space, for a given
spectral component, can be expressed as

I�(z) = 1
�2( f + z)2 RWq 0,0 (x�(z), �) (4.94)

where q 0,0(s) represents the zero-order circular harmonic of the pupil
Q(rN, 	), with s = r2

N + 1
2 . The normalized coordinates rN and 	 are

implicitly defined in Eq. (4.49). The specific coordinates (x�(z), �) for
the RWT are given by Eqs. (4.64) and (4.65). Note that for systems
with longitudinal chromatic aberration, the defocus coefficient W20
is substituted for the wavelength-dependent coefficient in Eq. (4.90).
Note that now the whole dependence of the axial irradiance on �, W40,
and z is established through these coordinates if the function Q(rN, 	)
itself does not depend on wavelength. This is the case when all the
aberrations of the system, apart from SA and longitudinal chromatic
aberration, have a negligible chromatic dependence. This is a very
usual situation in well-corrected systems, and in this case, every axial
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position, SA and chromatic aberration state, and wavelength can be
studied from the same two-dimensional RWD.

Thus, providing that these kinds of systems are analyzed, the poly-
chromatic description for the axial image irradiance can be assessed
by the formulas

X(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)x� d�

Y(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)y� d� (4.95)

Z(W20) =
∫
�

RWq 0,0 (x�(z), �)
�2( f + z)2 S(�)z� d�

where the values of (x�(z), �) for every wavelength, axial position,
and SA amount are given by Eqs. (4.64) and (4.65). Thus, once the
RWD of the function q 0,0(s) of the system is properly computed, these
weighted superpositions can be quickly and easily calculated.19,50,51

As an example for testing this technique, we evaluate the axial re-
sponse of a clear circular pupil imaging system, affected by spherical
and longitudinal chromatic aberrations as shown in Fig. 4.26. With-
out loss of generality we assume here that the SA coefficient has a flat
behavior for the considered spectral range. Once again, for the sake
of simplicity, we assume that no other aberrations are present.
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FIGURE 4.26 Aberration coefficients associated with the system under issue.
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FIGURE 4.27 Axial irradiance values for the system under study. Solid lines
represent the results by analytical calculation, while superimposed symbols
correspond to the computation through the single RWD technique.

We consider 36 axial positions characterized by defocus coefficient
values in a uniform sequence. We follow the same procedure as in
earlier sections for the digital calculation of the RWD RWq 0,0 (x�, �).
It is worth mentioning that for this pupil is possible to achieve an
analytical result for the monochromatic axial behavior of the system
for any value of W′

20, W40, and �, namely,12

I�(z) =
[

�a2

2� f ( f + z)

]2 1
W40

∣∣∣∣F
[

W′
20(�) + 2W40√

�W40

]
− F

[
W′

20(�)√
�W40

]∣∣∣∣
2

(4.96)

where

F (z) =
z∫

0

exp
(

i�t2

2

)
dt (4.97)

is the complex form of Fresnel integral. This analytical formula is used
here to evaluate the results obtained by the proposed method. Figure
4.27 presents a comparison of these approaches for three different
wavelengths in the visible spectral range. Excellent agreement can be
observed in this figure.

Finally, we performed the calculation of the axial values for the
chromaticity coordinates and the illuminance, by assuming the same
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FIGURE 4.28 Axial illuminance and chromaticity coordinates for the system
under study. Here solid lines represent the results obtained by the
conventional method, while superimposed symbols correspond to the
computation through the single RWD technique.

settings for the sensitivity functions and the illuminant as in the previ-
ous section. The values obtained with the method presented here are
compared in Fig. 4.28 with the ones obtained by applying the same
classic technique as in Sec. 4.3.3.2. Again, a very good agreement be-
tween them can be seen. A more detailed comparison of both methods
is presented in Ref. 19.

4.4 Design of Imaging Systems and Optical
Signal Processing by Means of RWT
4.4.1 Optimization of Optical Systems:

Achromatic Design
We now present a design method for imaging systems working under
polychromatic illumination on a RWT basis. In particular, we fix our
attention on the optimal compensation of the axial chromatic disper-
sion of the Fresnel diffraction patterns of a plane object Although this
proposal can be applied to a wide variety of systems, we concentrate
on an optical system specially designed for this purpose. This de-
vice allows us to obtain the image of any arbitrary diffraction pattern
with very low residual chromatic aberration.52,53 The optical system,
sketched in Fig. 4.29, works under planar broadband illumination. The
only two optical elements in this device are an achromatic lens, with
focal length f , and an on-axis kinoform zone plate. This element acts,
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FIGURE 4.29 Achromatic imaging system under study.

from a scalar paraxial diffraction point of view, as a conventional thin
lens with a focal length proportional to the inverse of the wavelength
� of the incoming light, i.e.,

Z(�) = Zo
�o

�
(4.98)

�o being a reference design wavelength and Zo = Z(�o ). We note
that although the effect of residual focuses can be significant for those
wavelengths that are different from the design wavelength, we do not
consider it here.

Our goal in this section is to achieve the optimal relationship be-
tween the geometric distances in the imaging system to obtain an out-
put image corresponding to a given Fresnel pattern with minimum
chromatic aberration. Thus, let us consider a given diffraction pattern
located at a distance Ro from the object for the reference chromatic
component of wavelength �o . It is well known that with parallel illu-
mination the same diffraction pattern appears for any other spectral
component at a distance from the input mask given by

R(�) = Ro
�o

�
(4.99)

In this way, if the limits of the spectrum of the incoming radiation are �1
and �2, the same diffraction pattern is replicated along the optical axis
between the planes characterized by distances R1 = R(�1) and R2 =
R(�2), providing a dispersion volume for the diffraction pattern under
study. However, if we fix our attention on the reference plane located at
a distance Ro from the object, for � �= �o we obtain a different structure
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for the diffracted pattern, and, therefore, the final superposition of all
the spectral components of the incoming light produces a chromatic
blur of the monochromatic result. To analyze this effect, we again use
the RWT approach to describe the spectral components of this Fresnel
pattern. Since the above dispersion volume is transformed, by means
of the imaging system, into a different image volume, it is interesting
to derive the geometric conditions that provide a minimum value for
its axial elongation in the image space. Equivalently, the same RWT
analysis will be performed at the output of the system to analyze the
chromatic blur at the output plane for the reference wavelength �o .

For the sake of simplicity, we consider a one-dimensional ampli-
tude transmittance t(x) for the diffracting object. Let us now apply
our approach to calculate the irradiance free-space diffraction pattern
under issue through the RWT of the object mask. If we recall the result
in Eq. (4.36) for z = Ro , we obtain that each spectral component of this
Fresnel pattern is given by

Io (x; �) ∝ RWt (x�(�), �(�)) , tan �(�) = −�Ro,

x�(�) = x
�Ro

sin �(�) (4.100)

In this equation the chromatic blur is considered through the spec-
tral variation of the coordinates in the RWT for any given transverse
position x in the diffraction pattern. Thus, for a fixed observation
position there is a region in the Radon space that contains all the
points needed to compute the polychromatic irradiance. If we define
�i = arctan (�i Ro ), for i = 1, 2, the width of this region in both Radon-
space directions can be estimated as

�� = |�1 − �2|, �x� =
∣∣∣∣ x

Ro

(
sin �1

�1
− sin �2

�2

)∣∣∣∣ (4.101)

Note that the smaller this region is, the less is the effect of the chro-
matic blur affecting the irradiance at the specified observation point.
To achieve an achromatization of the selected diffraction pattern, this
region has to be reduced in the output plane of the optical setup.

Let us now fix our attention on the effect of the imaging system on
the polychromatic diffraction pattern under issue. Again, we use the
RWT approach to achieve this description by simply noting that the
system behaves as an abcd device that links the object plane and the se-
lected output plane. The transformation matrix Machr can be obtained
as a sequence of elemental transformations (see Fig. 4.29), namely, free
propagation at a distance l, propagation through the achromatic lens,
free propagation to the focal plane of that element, passage through
the zone plate, and, finally free propagation at a distance d ′

o . The out-
put plane is selected as the image plane of the diffraction pattern
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under study for � = �o . Thus, by using the results in Sec. 4.2.1, it is
straightforward to obtain

M(�) =

⎛
⎜⎝ 1 − l

f
− f

Z(�)
−�

(
f − mo f + mol + f 2mo

Z(�)

)
1

� f
mo

⎞
⎟⎠ (4.102)

where the following restriction applies to the fixed desired output
plane

l = Ro + f − f
mo

− f 2

Zo
(4.103)

where mo = −d ′
o/ f is the magnification obtained at the fixed image

plane (for � = �o ). The relationship between the RWTs of the input
object and the output Fresnel pattern for each spectral channel now
can be established by application of Eqs. (4.27) and (4.28). In particular,
by setting � = 0 we find

I ′
o (x; �) ∝ RWt

(
x�′ (�), �′(�)

)
tan �′(�) = �

[
Ro + f 2

Zo

(
�

�o
− 1

)]
, x�′ = x

mo
cos �′(�) (4.104)

Therefore, for the polychromatic description of the output diffraction
pattern we have to sum values of the RWT of the transmittance of the
object in a region in the Radon domain whose size in both dimensions
is given by

��′ = |�′
max − �′

min|, �x�′ =
∣∣∣∣ x
mo

(cos �max − cos �min)

∣∣∣∣ (4.105)

where

�′
max = max{�′(�)|� ∈ [�1, �2]}, �′

min = min{�′(�)|� ∈ [�1, �2]}
(4.106)

The specific values of these limits, which define the extension of the
integration region in Radon space in the polychromatic case, depend
on the particular values of the geometric design parameters f and
Zo of the imaging system. We now try to find a case that minimizes
the chromatic blur in the output pattern. It is worth mentioning that
exact achromatization of the pattern is achieved only when �′(�) =
�′(�o ) ∀� ∈ [�1, �2], which cannot be fulfilled in practice, as can be
seen from Eq. (4.104). However, a first-order approximation to that
ideal correction can be achieved by imposing a stationary behavior
for �′(�) around � = �o . Mathematically, we impose

d�′(�)
d�

∣∣∣∣
�o

= 0 (4.107)



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

T h e R a d o n - W i g n e r T r a n s f o r m 155

(a) (b)

FIGURE 4.30 Gray-scale display of the irradiance distribution to be
achromatized: (a) Monochromatic pattern for �o = 546.1 nm. (b) Broadband
(Hg lamp) irradiance distribution.

or, equivalently,

d tan �′(�)
d�

∣∣∣∣
�o

= 0 (4.108)

which leads to the optimal constraint

Ro = − f 2

Zo
(4.109)

This condition transforms Eq. (4.103) into

l = 2Ro + f − f
mo

(4.110)

Thus, the choice of a set of geometric parameters l, f , Zo , and d ′
o

fulfilling the two above equations provides a design prescription for
a first-order compensation of the chromatic blur in the diffraction
pattern located, for � = �o , at distance Ro from the object.54

To illustrate this design procedure and to check the predicted
results, we present an experimental verification by using a two-
dimensional periodic transmittance as an object, with the same pe-
riod p = 0.179 mm in both orthogonal directions. As a Fresnel pat-
tern to be achromatized, a self-imaging distribution is selected. In
particular, after parallel illumination with �o = 546.1 nm, the dis-
tance Ro = 11.73 cm is selected. Figure 4.30a shows a picture of the
irradiance distribution in that situation. In Fig. 4.30b, the irradiance
distribution over the same plane, but when a polychromatic colli-
mated beam from a high-pressure Hg lamp is used, is presented. The
chromatic blur is clearly seen by comparing these two figures.

To optimally achromatize this diffraction pattern, we follow the
prescriptions given in the above paragraphs. We use a kinoform lens
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FIGURE 4.31 Gray-scale display of the achromatized irradiance distribution.

with Zo = −12 cm, and we choose a value d ′
o = 10.00 cm. Therefore,

we select a focal distance for the achromatic lens f = √−Zo Ro =
11.86 cm, and we place that object at a distance l = 2Ro + f + f 2/d ′

o =
49.39 cm from that lens. A gray-scale display of the output irradiance
is presented in Fig. 4.31. The comparison between this result and the
monochromatic one in Fig. 4.30a shows the high achromatization level
obtained with the optimized system.

4.4.2 Controlling the Axial Response:
Synthesis of Pupil Masks by RWT
Inversion

In Sec. 4.3.1.1 we showed that the axial behavior of the irradiance
distribution provided by a system with an arbitrary value of SA can
be obtained from the single RWT of the mapped pupil q 0,0(s) of the
system. In fact, Eq. (4.74) can be considered the keystone of a pupil
design method55 in which the synthesis procedure starts by perform-
ing a tomographic reconstruction of Wq 0,0 (x, �) from the projected
function I (0, 0, z) representing the irradiance at the axial points—
variableW20—for a sufficient set of values of W40. Thus, the entire
two-dimensional Wigner space can be sampled on a set of lines de-
fined by these parameters. The backprojection algorithm converts the
desired axial irradiance for a fixed value of W40, represented by a one-
dimensional function, to a two-dimensional function by smearing it
uniformly along the original projection direction (see Fig. 4.8). Then
the algorithm calculates the summation function that results when all
backprojections are summed over all projection angles �, i.e., for all
the different values of W40. The final reconstructed function Wq 0,0 (x, �)
is obtained by a proper filtering of the summation image.55 Once the
WDF is synthesized with the values of the input axial irradiances, the
pupil function is obtained by use of Eq. (4.4). Finally, the geometric
mapping in Eq. (4.57) is inverted to provide the desired pupil function.
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FIGURE 4.32 (a) Amplitude transmittance of a desired pupil function.
(b) Phase-space tomographic reconstruction of the same pupil.

To illustrate the method, we numerically simulated the synthesis
of an annular apodizer represented in Fig. 4.32. It has been shown
that its main features are to increase the focal depth and to reduce
the influence of SA. From this function we numerically determined
first the Wq 0,0 (x, �) function, using the WDF definition, and thereby
the projected distributions defined by the RWT, obtaining the axial
irradiance distribution for different values of SA. In this case, we used
1024 values for both W40/� and W20/�, ranging from −16 to +16. We
treated these distributions as if they represented the desired axial be-
havior for a variable SA, and we reconstructed the WDF by using
a standard filtered backprojection algorithm for the inverse Radon
transform. From the reconstructed WDF we obtained the synthesized
pupil function p(�x) by performing the discrete one-dimensional in-
verse FT of Wq 0,0 (x, �). The result is shown in Fig. 4.32b. As can be seen,
the amplitude transmittance of the synthesized pupil function closely
resembles the original apodizer in Fig. 4.32a.

4.4.3 Signal Processing through RWT
Throughout this chapter we have discussed the RWT as a mathemat-
ical tool that allows us to develop novel and interesting applications
in optics. Among several mathematical operations that can be opti-
cally implemented, correlation is one of the most important because it
can be used for different applications, such as pattern recognition and
object localization. Optical correlation can be performed in coherent
systems by use of the fact that the counterpart of this operation in the
Fourier domain is simply the product of both signals. To implement
this operation, several optical architectures were developed, such as
the classic VanderLugt and joint transform correlators.56,57 Because
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conventional correlation is a shift-invariant operation, the correlation
output simply moves if the object translates at the input plane. In many
cases this property is necessary, but there are situations in which the
position of the object provides additional information such as in im-
age coding or cryptographic applications, and so shift invariance is a
disadvantage.

The fractional correlation58,59 is a generalization of the classic cor-
relation that employs the optical FrFT of a given fractional order p
instead of the conventional FT. Conventionally, the fractional corre-
lation is obtained as the inverse Fourier transform of the product of
the FrFT of both the reference and the input objects, but for a sin-
gle fractional order p at a time. The fractional order involved in the
FrFT controls the amount of shift variance of the correlation. As is
well known, the shift-variance property modifies the intensity of the
correlation output when the input is shifted. In several pattern recog-
nition applications this feature is useful, for example, when an object
should be recognized in a relevant area and rejected otherwise, or
when the recognition should be based on certain pixels in systems
with variable spatial resolution. However, the optimum amount of
variance for a specific application is frequently difficult to predict,
and therefore more complete information would certainly be attained
from a display showing several fractional correlations at the same
time. Ideally, such a display should include the classic shift-invariant
correlation as the limiting case. In this section we will show that such a
multichannel fractional correlator could be easily implemented from
the RWD system presented in Sec. 4.2.2. The resulting optical system
generates a simultaneous display of fractional correlations of a one-
dimensional input for a continuous set of fractional orders in the range
p ∈ [0, 1].

We start by recalling58 the definition of the fractional correlation
between two one-dimensional functions f (x) and f ′(x)

C p (x) = F−1{Fp(�)F ′
p
∗(�), x} (4.111)

It is important to note that with the above definition the classic cor-
relation is obtained if we set p = 1. The product inside the brackets
of Eq. (4.111) can be optically achieved simultaneously for all frac-
tional orders, ranging between p = 0 and p = 1, following a two-step
process. In the first stage, the RWD of the input is obtained with the
experimental configuration shown in Sec. 4.2.2. A matched filter can
be obtained at the output plane if, instead of recording the intensity,
we register a hologram of the field distribution at this plane with a
reference wavefront at an angle �. (see Fig. 4.33).

In the second stage, the obtained multichannel matched filter is
located at the filter plane, and the input function to be correlated is
located at the input plane (see Fig. 4.34).
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FIGURE 4.33 Multichannel matched filter registration for a fractional
correlation. The elements are the same as in Sec. 4.2.2, except for BS
(beam splitter) and M1 and M2 (plane mirrors).

Because the transmittance of the holographic filter has one term
proportional to the complex conjugate of the reference field in
Eq. (4.111), for each fractional order channel the field immediately
behind the filter plane has one term proportional to the product of the
complex conjugate of the FrFT of the reference function f ′(x) and the
same FrFT of the input function f (x). Thus the multiplicative phase
factor in this equation and the corresponding one of the matched filter
cancel out. Besides, although the experimental FrFT for a given order
p is approximated owing to the scale error discussed in Sec. 4.2.2, the
experimental fractional correlation can be obtained exactly because
this error affects both Fp(�) and F ′

p
∗(�). Finally, the diffracted field at

angle � is collected by the lens Lc , which performs a one-dimensional
FT. Because each fractional order p ∈ [0, 1] has an independent one-
dimensional correlation channel, all the fractional correlations for this
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FIGURE 4.34 Multichannel fractional correlator. The filter H corresponds to
the one obtained in the setup of Fig. 4.33.
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FIGURE 4.35 Amplitude transmittance of an input object selected to
perform multichannel fractional correlation.

range of fractional orders are obtained simultaneously at the output
plane. Thus a two-dimensional display is obtained in which the frac-
tional correlations are ordered in a continuous display along the axis
normal to the plane shown in Fig. 4.34.

The shift-variant property of the FrFT correlation was confirmed
experimentally in Ref. 60. Here we present a numerical simula-
tion using an input object whose amplitude transmittance is shown
in Fig. 4.35. It represents a double nonsymmetric slit with a contin-
uous gray-level amplitude transmittance. The continuous transition
between the shift-variant case p = 0 and the shift-invariant case p = 1
is confirmed in Fig. 4.36. In this figure the fractional autocorrelation
of the input is considered, but the reference objects are shifted at the
input plane.

Figure 4.36a shows the fractional correlations when the input is
shifted an amount of one-half of the object size, and Fig. 4.36b shows
the fractional correlation when the input is shifted an amount equal to
the size of the object. The variant behavior of the fractional correlation
can be clearly seen by the comparison of these figures. Both displays
coincide near to p = 1 (except for the location of the maxima), but for
lower values of p the fractional correlation is highly dependent on the
magnitude of the shift. As can be seen in the three-dimensional plot
in this figure, for a fixed displacement the correlation peak increases
with p. As expected for p = 1, the correlation peak is the classic one
located at the input position. For values ranging between p = 0.5
and p = 1, the correlation peak did not change appreciably. The
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FIGURE 4.36 Multichannel fractional autocorrelation of the function
represented in Fig. 4.35 with (a) a shift in the input plane of one-half of the
object size and (b) a shift of the whole size of the object.

shift-variant property becomes evident for values close to p = 0.25.
It can be seen that as the fractional order becomes lower, the peak
degenerates and shifts disproportionately toward the object position.
Thus, the output of the system shows a variable degree of space vari-
ance ranging from the pure shift variance case p = 0 to the pure shift
invariance case p = 1, that is, the classic correlation. This kind of
representation provides information about the object, such as classic
correlation, but also quantifies its departure from a given reference
position.



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

162 C h a p t e r F o u r

Acknowledgments
The authors would like to express their gratitude to P. Andrés, S.
Granieri, E. Sicre, and E. Silvestre for their contributions in the research
revisited in this chapter. They also acknowledge financial support of
Ministerio de Ciencia y Tecnologı́a, Spain (Grants DPI 2006-8309 and
DPI 2008-02953).

References
1. J. C. Wood and D. T. Barry, “Radon transformation of time-frequency distri-

butions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech
Signal Process. 4: 257–261 (1992).

2. J. C. Wood and D. T. Barry, “Linear signal synthesis using the Radon-Wigner
transform,” IEEE Trans. Signal Process. 42: 2105–2111 (1994).

3. L. Cohen, Time-Frequency Analysis, Prentice-Hall, Upper Saddle River, N.J., 1995.
4. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Op-

tical illustration of a varied fractional Fourier-transform order and the Radon-
Wigner display,” Appl. Opt. 35: 3925–3929 (1996).

5. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier
transform,” J. Opt. Soc. Am. A10: 2181–2186 (1993).

6. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andrés, “Radon-Wigner display:
A compact optical implementation with a single varifocal lens,” Appl. Opt. 36:
8363–8369 (1997).

7. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,”
Opt. Lett. 19: 1388–1390 (1994).

8. P. Andrés, W. D. Furlan, G. Saavedra, and A. W. Lohmann, “Variable fractional
Fourier processor: A simple implementation,” J. Opt. Soc. Am. A14: 853–858
(1997).

9. E. Tajahuerce, G. Saavedra, W. D. Furlan, E. E. Sicre, and P. Andrés, “White-
light optical implementation of the fractional fourier transform with adjustable
order control,” Appl. Opt. 39: 238–245 (2000).

10. Y. Zhang, B. Gu, B. Dong, and G. Yang, “Optical implementations of the Radon-
Wigner display for one-dimensional signals,” Opt. Lett. 23: 1126–1128 (1998).

11. Y. Zhang, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “New optical configurations for
implementing Radon-Wigner display: Matrix analysis approach,” Opt. Comm.
160: 292–300 (1999).

12. H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the
presence of aberrations,” Optica Acta 17: 157–182 (1970).

13. M. J. Yzuel and F. Calvo, “Point-spread function calculation for optical systems
with residual aberrations and non-uniform transmission pupil,” Optica Acta 30:
233–242 (1983).

14. J. J. Stamnes, B. Spjelkavik, and H. M. Pedersen, “Evaluation of diffraction
integrals using local phase and amplitude approximations,” Optica Acta 30:
207–222 (1983).

15. H. G. Kraus, “Finite element area and line integral transforms for generalization
of aperture function and geometry in Kirchhoff scalar diffraction theory,” Opt.
Eng. 32: 368–383 (1993).

16. L. A. D’Arcio, J. J. M. Braat, and H. J. Frankena, “Numerical evaluation of
diffraction integrals for apertures of complicated shape,” J. Opt. Soc. Am. A11:
2664–2674 (1994).

17. G. Saavedra, W. D. Furlan, E. Silvestre, and E. Sicre, “Analysis of the irradi-
ance along different paths in the image space using the Wigner distribution
function,” Opt. Comm. 139: 11–16 (1997).



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

T h e R a d o n - W i g n e r T r a n s f o r m 163

18. W. D. Furlan, G. Saavedra, E. Silvestre, and M. Martı́nez-Corral, “On-axis ir-
radiance for spherically aberrated optical systems with obscured rectangular
apertures: A study using the Wigner distribution function,” J. Mod. Opt. 45:
69–77 (1998).

19. W. D. Furlan, G. Saavedra, E. Silvestre, J. A. Monsoriu, and J. D. Patrignani,
“Assessment of a Wigner-distribution-function-based method to compute the
polychromatic axial response given by an aberrated optical system,” Opt. Eng.
42: 753–758 (2003).

20. W. D. Furlan, G. Saavedra, J. A. Monsoriu, and J. D. Patrignani, “Axial behaviour
of Cantor ring diffractals,” J. Opt. A: Pure Appl. Opt. 5: S361–S364 (2003).

21. W. D. Furlan, M. Martı́nez-Corral, B. Javidi, and G. Saavedra, “Analysis of 3-D
integral imaging displays using the Wigner distribution,” J. Disp. Technol. 2:
180–185 (2006).

22. P. Andrés, M. Martı́nez-Corral, and J. Ojeda-Castañeda, “Off-axis focal shift for
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39. H. Bartelt, J. Ojeda-Castañeda, and E. E. Sicre, “Misfocus tolerance seen by
simple inspection of the ambiguity function,” Appl. Opt. 23: 2693–2696 (1984).



May 22, 2009 17:52 Phase Space Optics: Fundamentals and Applications/Markus E. Testorf/159798-0/Ch04

164 C h a p t e r F o u r

40. W. D. Furlan, G. Saavedra, and J. Lancis, “Phase-space representations as a tool
for the evaluation of the polychromatic OTF,” Opt. Comm. 96: 208–213 (1993).

41. W. D. Furlan, M. Martı́nez-Corral, B. Javidi, and G. Saavedra, “Analysis of
3-D integral imaging display using the Wigner distribution,” J. Disp. Technol. 2:
180–185 (2006).

42. K. H. Brenner , A. W. Lohmann, and J. Ojeda-Castañeda, “The ambiguity func-
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