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Abstract 
      In this paper we review the focusing and imaging 
properties of fractal photon sieves and Devil´s lenses 
designed in order to improve the diffraction efficiency of 
fractal diffractive lenses. It is shown that these lenses 
provide a smoothing effect on the higher order foci of a 
conventional fractal zone plate. Furthermore, the 
characteristic self-similar axialesponse of the fractal 
zone plates is always preserved. This behavior predicts 
an improved performance of fractal lenses as image 
forming devices with an extended depth of field and a 
reduced chromatic aberration.
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1. Introduction 
 Fractal zone plates (FZP) [1] where presented in 2003 as curious 
diffractive elements with many potential applications in several scientific and 
technological areas. These elements are essential in image forming setups that 
are used in THz tomography, soft X-ray microscopy, astronomy, and 
lithography. The main property of a FZP is its fractal structure along the 
squared radial coordinate. It has been shown that FZPs have multiple foci 
replicating its fractality internally at each focus along the optical axis [2-4].  

In this text we show two different mechanisms to control the diffraction 
efficiency of this kind of fractal lenses have been proposed in order to design 
realistic optical systems. The diffraction efficiency of a FZP can be controlled 
by amplitude modulation, resulting in new elements called fractal photon 
sieves (FPS) [5,6] and also by certain pure phase FZPs known as Devil’s lenses 
(DLs) [7].  

A FPS developed for focusing and imaging soft X with high resolution 
capabilities. It consists of hundreds of small circular holes distributed over the 
zones of a FZP. Unlike FZP the FPS has no connected regions. This feature 
permits its fabrication in a single surface without any substrate. On the other 
hand, a DL is a kinoform element in which the surface relief is constructed 
using a function known as the devil’s staircase. 

In this contribution we revise the focusing properties of these two new 
families of diffractive elements by computing the diffraction patterns 
transversal to the propagation direction. 
 
2. Fractal photon sieves 

Photon sieves [8] are another new kind of diffractive optical elements, 
developed for focusing and imaging soft X rays with high resolution 
capabilities. In this section we present the design and the focusing properties of 
this new design.  

Let us review the concept to Fresnel zone plate: As it is well known, a 
Fresnel zone plate consists of alternately transparent and opaque zones whose 
radii are proportional to the square root of the natural numbers, thus it can be 
generated from a 1D structure (see Fig. 1, upper part) defined by the periodic 
function q(ς), by performing a change of coordinates ς=(r0/a)2 and by rotating 
the transformed 1-D function around one of its extremes. The result is a 
Fresnel zone plate having a radial coordinate ro and an outermost ring of radius 
a [see Fig. 2(a)]. In a similar way a FZP is constructed by replacing the 
periodic function used in the generation of a Fresnel zone plate, by a 1-D 
fractal structure, as for example the triadic Cantor set shown in Fig. 1 (lower 
part). The corresponding zone plate with fractal profile is represented in Fig. 
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2(b). It has been shown [1-4] that the irradiance along the optical axis 
produced by a FZP presents multiple foci with a distinctive fractal structure. 
The position, size and depth of the foci depend on the fractal level and on the 
lacunarity of the encoded fractal structure. Based on a FZP, the FPS here 
proposed combines the features of FZP with the concept of photon sieve. A 
FPS has essentially the same structure of a FZP but instead of transparent rings 
the corresponding zones have been broken up into isolated circular holes. The 
result is shown in Fig. 2(c). In the construction procedure we adopted the 
results reported in Ref [8] where it has been shown that for a photon sieve 
constructed with a Fresnel zone plate structure, the diameter d of the holes in 
each ring of width w of has an optimum value for the effective contribution to 
the focus. This value is given by d=1.53w. As in a conventional photon sieve, 
the angular distribution of the holes in each ring can be fixed, or random [like 
in Fig. 2(c)]. 
      As in a conventional photon sieve, the angular distribution of the holes in 
each ring can be fixed, or random (like en Fig. 2 (c)). In this section we show 
that this election is irrelevant for the axial response. 

Let us consider the irradiance along the optical axis z, given by an optical 
system having a 2-D pupil function po(ro, φ), expressed in canonical  

 

 
 

Figure 1. Periodic and fractal 1-D structures to be used to generate zone plates. 
 

 
 

Figure 2. Comparison between (a) Fresnel zone plate, (b) FZP, and (c) FPS. 
polar coordinates, when it is illuminated by a plane wave of wavelength λ: 
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 The axial irradiance in Eq. (1) can be expressed in terms of a single radial 
integral, by performing first the azimutal average of the pupil function po(ro, φ): 
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Then Eq. (1) can be rewritten as 
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To compare the performance of a FPS with a conventional FZP [1] we 

used Eq. (2) and Eq. (3) to compare the axial irradiances provided by the 
corresponding pupil functions [see Figs. 2(b) and 2 (c)]. The result is show in 
Fig. 3. The parameters used to calculate this plots were a=2 mm, λ=632.8 
nm.The number of holes in the FPS was 650 and the density of holes per zone 
(i.e. the ratio between the area covered by the holes and the total area of the 
zone) was aproximately 90%. The minimum diameter in the outermost ring 
was d=1.53 w=0.0572mm. The Fig (3) shows like the focal structure of a FZP 
along the optical axis is characterized by the coincidence of the central peak 
with the one obtained for a conventional Fresnel zone plate, but the internal 
structure of the focus reproduce the self similarity of the zone plate. This 
behavior is repeated at the higher-order diffraction foci [see Fig. 3(a)]. When 
the FZP is replaced by a FPS the principal focus remains almost unaltered but 
all odd higher orders are highly reduced due to the smoothing effect that the 
holes produce on the azimuthal average of the effective pupil [see Fig. 3(b)]. 
This effect is obtained at the expense of the appearance of low intensity even 
orders, which by design are null in the case of azimuthally uniform FZP. Note 
also that the secondary maxima in the principal focus are relatively higher for a 
FPS. 

We have experimentally tested the imaging capabilities of FPS under 
white light illumination. For comparison images of test object (consisting of 
binary letters from an optotype-like chart) were formed both with a 
conventional Fresnel photon sieve [2] with 81 zones and with the equivalent 
FPS (i.e. the same diameter and same outermost pinhole diameters) 
constructed for S=4. The diameter of the binary zone plates used in the 
experiment were 5mm and their focal distances 124mm, for λ=632.8nm.   
The photon sieves were printed and then photographically reduced onto 35mm 
slides. The images of the test object were obtained directly onto an 8  
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Figure 3. Normalized irradiance distributions along the optical axis produced by the lenses in Figs. 
2(b) and 2(c). (a) FZP,  (b) and FPS  (both computed for S=3). 
 
megapixels CMOS detector  of area 22.2x14.8mm2 (Cannon EOS 350D digital 
camera [3]). The results are summarized in Fig. 4. Due to the different 
transmittances of both kind of zone plates the range of intensities of the 
photographs in this figure were normalized to the peak intensity, but no 
additional post-processing was performed. As can be seen the out of focus 
image obtained with the FPS is considerably better than the one obtained with 
the Fresnel photon sieve (noticeable in the second and third lines of letters), the 
price paid to gain depth of field is a slightly poor resolution at the in-focus 
plane [see Figs. 4(a) and 4(b)]. Note also that the gain of the depth of field 
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results in a considerable reduction in chromatic aberration when using white 
light. In spite of being a subjective comparison the result is consistent with the 
prediction that can be done with the hypothesis of theoretical irradiances 
computed using Eq. (3). This result is shown in Fig. 5 were, for simplicity, the 
plots have been computed for S=3. As can be seen in Fig. 5 the reduction of 
the chromatic blur can be explained by the overlapping of the foci for the 
different wavelengths that creates an overall extended depth of field which is 
less sensitive to the chromatic aberration. 
 Next we present a modification of diffractive lenses whose structure is based 
on the combination of two concepts: photon sieve and fractal zone plates with 
variable lacunarity called Lacunar Fractal Photon Sieves (LFPS). The as a free 
parameter that can be used to perform apodization using a binary structure. 
  

    
(a)                           (b)                             (c)                          (d) 

 
Figure 4. (a) Image obtained with FPS in the green focus. (b) Image obtained with 
Fresnel photon sieve in the green focus. (c) Image obtained with FPS in the defocused 
toward the object.(d) Image obtained with Fresnel photon sieve in the defocused toward 
the object. 
 

 
 
 
Figure 5. Axial irradiances computed for (a) the Fresnel photon sieve and (b) the FPS used in Fig. 
4 for λ=647nm (red line), 568nm (green line), and 488nm (blue line). 
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Figure 6.  Schemes for the generation of a polyadic Cantor fractal set for N=4 up to 
S=2. γ  is the scale factor and ε is the parameter that characterizes the lacunarity. 
 

The construction of a typical polyadic Cantor fractal set with a specific 
lacunarity is shown in Fig. 6. The first step in the construction procedure 
consists in defining a straightline segment of unit length called initiator (stage 
S = 0). Next, at stage S = 1, the generator of the set is constructed by N (N = 4 
in the figure) non-overlapping copies of the initiator each one with a scale γ < 
1. At the following stages of construction of the set (S = 2, 3,...), the generation 
process is repeated over and over again for each segment in the previous stage.  

To characterize the resulting Cantor set, as well as many other fractal 
structures, one of the most frequently-used descriptors is the fractal dimension, 
defined as 

 
D = -In(N)/In(©)                                                                                           (4) 
 

However, this parameter does not uniquely define the fractal. In fact, for 
the general case, it is necessary to introduce another parameter to specify the 
distribution of the N copies into the unit length segment. This parameter 
specifies the lacunarity of the resulting structure and it is essential to complete 
the characterization of the fractal because structures with different lacunarity 
can have the same fractal dimension. To define the lacunarity, we use the 
width of outermost gap in the first stage (see Fig. 6). This convention was also 
adopted in some previous papers dealing with Cantor fractals [3, 9, and 10]. It 
has been shown that regular fractal is a particular case of this general structure 
when the lacunarity ε, takes the following value: 

 
1
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−

                                                                                                       (5) 

 
which is equivalent to impose that the bars and gaps have the same size at the 
initiator stage. 
 The LFPS here proposed has essentially the same structure of a lacunar 
FZP but instead of transparent rings the corresponding zones have been broken 
up into isolated circular holes randomly distributed (a photon sieve).  
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Now we investigate the focusing properties of a typical LFPS. To compare 
the performance of a LFPS with the associated lacunar FZP we used Eq. (3) to 
compute the axial irradiances provided by the pupil functions. The result is 
shown in Fig.7 together with the irradiances corresponding to analogous pupils 
constructed for S = 1. In order to observe the fractal behaviour of the 
irradiances for different stages of growth S, we have normalized the axial 
distance, z, to the principal focal length given by 

 
2
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Nλ
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−

                                                                                                (6) 

                    
The self-similarity of the resulting axial irradiances can be clearly seen in 

Fig. 7(a). The dotted lines (S = 1) forms the envelope of the solid lines (S = 2). 
On the other hand, when the lacunar FZP is replaced by a LFPS the principal 
focus remains almost unaltered but all odd higher orders are highly reduced 
due to the smoothing effect that the holes produce on the azimuthal average of 
the effective pupil. This effect is obtained at the expense of the appearance of 
low intensity even orders, which by design are null in the case of azimuthally 
uniform FZP with ε = εR. 

 

 
 

Figure 7. Normalized irradiance distribution along the optical axis produced by (a) FZP 
and (b) FPS shown in Fig. 2(a) and Fig. 2(b), respectively. The dotted lines represent 
the corresponding axial irradiances for S=1. 
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To show that the self-similar behavior provided by LFPS is retained even 
when the lacunarity paramter is varied, we have used twist plots [10]. These 
plots represent the axial irradiance as a function of the normalized axial 
distance and the lacunarity parameter ε . Fig. 8 shows twist plots for tetraedic 
(N = 4) LFPS S = 1 (a) and S = 2 (b). In these plots a linear gray level scale 
was used for the normalized axial irradiance. 

The most noticeable feature of Fig. 8 is the self-similarity that can be 
observed between the plots corresponding to S = 1 and S = 2. In fact, the 
rescaled data at stage S = 1 forms an envelope for the data at S = 2, and both 
structures are self-similar for any value of ε. This result shows that the axial 
irradiance provided by polyadic LFPS has self-similar properties like to those 
reported for lacunar FZP [3]. However, from the focalization point of view 
LFPS are more efficient than lacunar FZP because the relative intensity of the 
main focus is much higher than the secondary foci. 

 

 
 

Figure 8. Gray-scale representation of the axial response plotted as a function of the 
normalized axial distance and the lacunarity of a LFPS (N=4, γ=1/7) for: (a) S=1, and 
(b) S=2.  
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3. Devil’s lenses 
Devil’s lenses (DL) are new type of pure phase DOEs.  DL is a kinoform 

element in which the surface relief is constructed using a function known as 
the devil’s staircase. In this section we present the design and the focusing 
properties of this new design. We will call DL to any rotationally symmetric 
diffractive lens whose phase profile is designed from a devil’s staircase 
function. A standard example of a devil's staircase is the Cantor function, 
which can be generated from any given Cantor set (CS). The first step in the 
CS construction procedure, consists in defining a straight-line segment of unit 
length called initiator (stage S=0). Next, at stage S=1, the generator of the set 
is constructed by dividing the segment into m equal parts of length 1/m and 
removing some of them. Then, this procedure is continued at the subsequent 
stages, S=2, 3. … Without loss of generality, let us consider the triadic CS 
shown in the upper part of Fig. 9(a). In this case m=3 and it is easy to see that, 
at stage S there are 2S segments of length 3-S with 2S–1 disjoint gaps intervals 
[pS,l, qS,l], with l=1,…, 2S–1. Based on this fractal structure in this case the 
devil’s staircase Cantor function FS(x) [11] can be defined in the interval [0,1] 
as a linear increasing function at the segments of the CS and it takes constant 
values at the gaps of the CS (Fig. 9). 

From FS(x) we define the corresponding DL as a circularly symmetric 
DOE with a phase profile which follows the Cantor function at a given stage, 
S. At the gap regions defined by the Cantor set the phase shift is –l2π, with l=1,  
2S–1. Thus, the convergent DL transmittance is defined by 

 
 

 
 
Figure 9. (a) Triadic Cantor set for S=1, S=2, and S=3. The structure for S=0 is the 
initiator and the one corresponding to S=1 is the generator. The Cantor function or 
Devil’s staircase, FS(x), is shown under the corresponding Cantor set for S=3. (b) 
Convergent DL at stage of growth S=3 and the equivalent kinoform Fresnel lens. 
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( ) ( )1( , ) exp i 2s
DL Sq q S Fς ς π ς+⎡ ⎤= = −⎣ ⎦                                                                       (7) 

 
where 
 

( )2r aς =                                                                                    (8) 
 
is the normalized quadratic radial variable and a is the lens radius. Thus, the 
phase variation is quadratic in each zone of the lens. The surface-relief profile, 
h(r), of the DL corresponding to the above phase function can be obtained 
from the relation [12] 
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where mod 2π[φ(r)] is the phase function φ(r) modulo 2π, n is the 

refractive index of the optical material used for constructing the lens, and λ is 
the wavelength of the light. The upper part of Fig. 9(b) shows the profile of a 
convergent DL generated using Eq. (9). For comparison we have depicted at 
the lower part of the same figure the profile corresponding to a conventional 
Fresnel kinoform lens of the same focal length. It is instructive to note that the 
DL can be understood as a conventional kinoform lens but with some missing 
phase zones. 

Since we will consider DOEs whose minimum feature size is much greater 
than the wavelength of incident light we will use the scalar diffraction to 
evaluate their performance. In fact, we will show that even for the lower values 
of S the distinctive features of DLs are evident. Then, within that 
approximation, the irradiance at a given point in the diffraction pattern 
produced by a general rotationally invariant pupil with a transmittance p(ro) is 
given by 
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where z is the axial distance from the pupil plane, r has its origin at the optical 
axis, and λ is the wavelength of the incident monochromatic plane wave. If the 
pupil transmittance is defined in terms of the normalized variable in Eq. (8), 
the irradiance can be expressed as the Hankel transform of the pupil function, 
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where q(ς)=p(ro). In Eq. (11), u=a2/2λz and v=r/a are the reduced axial and 
transverse coordinates, respectively. If we focus our attention to the values the 
irradiance takes along the optical axis, then v=0, and Eq. (11) reads 
 

( ) ( ) ( )
21

2 2
0

0

4 exp i 2  dI u u q uπ ς π ς ς= −∫                                                                (12) 

 
Thus, the axial irradiance can be expressed in terms of the Fourier 

transform of the mapped pupil function q(ς). Using Eq. (7) for the 
transmittance corresponding to a DL and taking into account that one of the 
features of self-similar structures is that the dimensionality of the structure 
appears in its power spectrum [1], then Eq. (12) predicts that a DL will 
produce an irradiance along the optical axis with a fractal profile that 
resembles the structure of the DL itself. To show this fact explicitly, the axial 
irradiance of the DL computed for different stages of growth S is shown in Fig. 
10. The irradiance of the associated kinoform Fresnel lens is shown in the 
same figure for comparison. Note that the scale in the axial coordinate for each 
value of S is different. It can be seen that the axial position of the focus of the 
Fresnel kinoform lens and the central lobe of the DL focus both coincide at the 
normalized distance u=3S. Thus, from the change of variables adopted in Eq. 
(11) the focal length of the DL can be expressed as 
 

2

2 3S S

af
λ

=                                                                                                         (13) 

 
As expected, the axial response for the DL exhibits a single major focus 

and a number of subsidiary focal points surrounding it, producing a the focus 
region with a characteristic fractal profile. In fact, the three patterns in the 
upper part of Fig. 10 are self-similar, i.e., as S becomes larger an increasing 
number of zeros and maxima are encountered, which are scale invariant over 
dilations of factor γ=3. The axial intensity distributions corresponding to the 
ZPs of low level involve the curves of the upper ones. This focalization 
behavior, which is here demonstrated that DLs satisfy, is, in fact, an exclusive 
feature of FZPs and it was called the axial scale property [1]. Interestingly the 
main focus of the DLs presents a certain degree of axial superresolution. This 
effect is particularly evident from the comparisson of the upper and lower parts 
in Fig.10 for the irradiances corresponding to S=2 and S=3. Of particular 
interest are the intensities at transverse planes corresponding to the different 
maxima and minima of the axial irradiance. These are depicted in Fig. 11 
together with their relative intensities. Note that the predicted minima are 
characterized by a concentric doughnut form. 
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When using broadband illumination the monochromatic irradiances 
provided by the diffractive lenses regarded so far are affected by chromatic 
dispersion, as shown in Fig. 12. In the case of DLs the subsidiary foci can 
beconsidered as an extended depth of focus for each wavelength and, as can be 
seen, they partially overlap with the other ones creating an overall extended 
depth of focus, which should be less sensitive to the chromatic aberration than 
the conventional Fresnel kinoform lens. 

  

 
 
Figure 10. Normalized irradiance vs. the axial coordinate u obtained for aDL at three 
stages of growth (upper part) and for its associated Fresnel kinoform lens (lower part). 
 
 

 
 
Figure 11. Transverse diffraction patterns around the principal focus of a DL with S=2. 
The normalized axial distance is given by z/f2=32/u. 
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Figure 12. Normalized irradiance vs. the axial coordinate u obtained for a DL (left) and 
for its associated Fresnel kinoform lens for three wavelengths R=650 nm; G=550 nm; 
and B=480 nm. In all cases S=2. 
 
4. Conclusions 

The focusing and imaging properties of PFS have been revised. We 
demonstrated that a FPS has an extended depth of field and a reduced 
chromatic aberration compared with a Fresnel zone plate of the same focal 
length. The distribution of the holes is a degree of freedom that you can be 
exploited to perform apodization, particularly to nearly suppress the higher 
order foci. Another advantage of FPS over the FZP arises from the fabrication 
point of view: the FPS can be constructed in a single structure without any 
supporting substrate. Besides FPS can be also employed as a versatile focusing 
device in other regions of the electromagnetic spectrum, such as microwaves 
and X-rays or even with slow neutrons, in which graded amplitude pupils are 
difficult or even impossible to construct.  

On the other hand, a new type of pure phase DOEs, coined “devil’s 
lenses”, has been introduced. To avoid the absorption losses that characterize 
amplitude fractal zone plates and to improve their diffraction efficiency the 
phase function for a typical DL has a quadratic-fractal blazed profile. It is 
shown that the distribution of the surface grooves of these fractal lenses is 
obtained through the “devil’s staircase” or Cantor function. When highly 
monochromatic sources are available the irradiance along the optical axis 
provided by a DL presents a single fractal focus with a characteristic fractal 
profile which results in a certain degree of axial superresolution for the main 
axial lobe. The minima appearing side by side around this lobe present 
transverse doughnut modes. The potential uses of DLs are numerous in 
applications where a high depth of field is desirable but where the illumination 
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sources are wideband. These applications cover different scientific and 
thecnological areas that use diffractive optics ranging from soft X-ray 
microscopy to THz imaging. 
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