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Abstract: In this paper we present a new kind of vortex lenses in which the 
radial phase distribution is characterized by the “devil’s staircase” function. 
The focusing properties of these fractal DOEs coined Devil’s vortex-lenses 
are analytically studied and the influence of the topological charge is 
investigated. It is shown that under monochromatic illumination a vortex 
devil’s lens give rise a focal volume containing a delimited chain of vortices 
that are axially distributed according to the self-similarity of the lens. 
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1. Introduction 

Optical vortices extended the capabilities of conventional optical traps because in addition to 
trap microparticles they are capable to set these particles into rotation due to the orbital 
angular momentum of light [1,2]. Among the several methods that have been proposed for 
optical vortices generation the most common approach is the spiral phase plate [3,4] mainly 
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inasmuch as this technique provides a high energy efficiency. Recently, a method for 
producing a sequence of focused optical vortices along the propagation direction has been 
proposed by the use of a spiral fractal zone plate [5]. Fractal zone plates (FraZPs) are binary 
zone plates with fractal profile along the square of the radial coordinate [6,7]. These new 
optical elements have deserved the attention of several experimental research groups working 
in diffractive optics [8,9] and, besides of the above mentioned spiral fractal zone plates, they 
also inspired the invention of other photonic structures such as optical fibers with fractal cross 
section [10] and fractal photon sieves [11]. 

It has been demonstrated that for multiple-plane optical trappings, the spiral FraZP 
provides the potential to generate a light beam with hybrid axial optical vortices and multiple 
subsidiary foci near the major focal points [5], and this method was proposed for optical 
trapping with focused vortices in the microscopic scale with high focal depth. Since the 
diffraction efficiency of diffractive optical elements (DOEs) is crucial for certain practical 
applications and to further improve it for a spiral FraZP, in this paper, we propose a new 
design of spiral phase plate which is based on a blazed FraZP: the Devil’s lens (DLs) [12]. A 
DL lens has a characteristic surface relief which is obtained using the devil’s staircase 
function [13]. This function, which is related to the standard Cantor set, also appears in 
several areas of physics, as for instance, in wave-particle interactions [14], in crystal growth 
[15], and in the mode locking of the 3D coherent states in high-Q laser cavities [16]. A 
multilevel phase version of a DL has been reported experimentally recently [17]. 

The new element we propose, which is referred to as Devil’s vortex-lens (DVL), is a 
phase-only Devil’s lens modulated by an helical phase structure. Our design is able to 
generate a sequence of focused vortices surrounding the major foci inside a single main fractal 
focus. It is because of its blazed profile that DVL has an improved diffraction efficiency with 
respect to the spiral fractal zone. The focusing properties of different DVLs are studied by 
computing the intensity distribution along the optical axis and the transverse diffraction 
patterns along the propagation direction. 

2. Vortex devil’s lenses design 

The design of a Devil’s lens is mathematically based on the Cantor function [12,13], which is 
defined in the domain [0,1] as 
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being FS(0) = 0 and FS(1) = 1. In Fig. 1 we have represented the triadic Cantor function F3(x). 
It can be seen that the steps of the devil’s staircase, take the constant values l/23

 in the 

intervals p3,l≤x≤q3,l (with l = 1, …,7) whereas in between these intervals the function increases 
linearly. 

From a particular Cantor function FS(x) a DL is defined as a circularly symmetric pure-
phase DOE whose transmittance is defined by 

 ( ) [ ] ( )1

DLexp exp i 2 ,
s

Sq i Fς π ς+ = Φ = −   (2) 
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Fig. 1. Triadic Cantor set for S = 1, S = 2, and S = 3. The structure for S = 0 is the initiator and 
the one corresponding to S = 1 is the generator. The Cantor function or Devil’s staircase, FS(x), 
is shown under the corresponding Cantor set for S = 3. 

where 

 ( )2
r aς =   (3) 

is the normalized quadratic radial variable and a is the lens radius. Thus, the phase variation 
along the radial coordinate is quadratic in each zone of the lens. At the gap regions defined by 
the Cantor set the phase shift is –l2π, with l = 1, …, 2

S
–1. The form of a DL is shown in Fig. 

2a) in which the gray levels show the continuous phase variation. 
A DVL can be simply constructed from a conventional DL by adding to it the azimuthal 

variation of the phase that characterize a vortex lens i.e.; ΦVL = imθ, where m is a non zero 
integer called the topological charge and θ is the azimuthal angle. In this way the phase 
distribution of DVL is given by: ΦDVL = mod2π(ΦDL + ΦVL) being ΦDL the phase of the of a DL 
(see Eq. (2). Figs. 2b) and 2c) show DVLs with m = 1 and m = 3, respectively. Note in the 
same figure that a Devil’s lens is a DVL with m = 0. In other words: DVLs can be considered 
as a generalization of the DLs. 

 

Fig. 2. (a) Phase variation as gray levels for a DL (S = 2), and for DVLs with topological 
charge (b) m = 1, and (c) m = 3. 

3. Focusing properties of a DVL 

Let us consider the diffraction pattern provided by a DVL. The transmittance of this lens, 
t(r,θ), can be expressed as the product of two factors, the first one, associated to a DL which 
has only a radial dependence and the other one corresponding to a vortex lens with a linear 
phase dependence on the azimuthal angle, i.e.; 
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 ( ) [ ], ( ) exp .t r p r imθ θ=   (4) 

Within the Fresnel approximation the diffracted field at a given point (z,r,θ), where z is the 
axial distance from the pupil plane, can be characterized by the irradiance and the phase 
functions which are given respectively by: 
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In Eqs. (5) and (6) λ is the wavelength of the incident monochromatic plane wave. Now, if 
the pupil transmittance is defined in terms of the normalized variable in Eq. (3), these 
equations become 
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where q(ς) = p(ro) is given by Eq. (2), and u = a2
/2λz and v = r/a are the reduced axial and 

transverse coordinates, respectively. 
By using the above equations we have computed the irradiance provided by the DVLs 

shown in Fig. 2. The integrals were numerically evaluated using Simpson's rule using a step 
length 1/500. As expected, the axial response for the DL (Fig. 2a) represented in Fig. 3a) 
exhibits a single major focus at fs = a2/2λ3s

 and a number of subsidiary focal points 
surrounding it, producing a focal volume with a characteristic fractal profile. Note that, if we 
change the topological charge, each focus transforms into a vortex and a chain of doughnut 
shaped foci is generated. Figs. 3(b) and 3(c) shows the focal volume associated to the DVL 
with m = 1 and m = 3, respectively. We have also computed the diffraction patterns for 
different topological charges (not shown) and verified that the diameter of the doughnut 
increases with the topological charge as happens with conventional vortex producing lenses 
[18, 19]. 

For predicting the focusing capabilities of the DVLs, the diffracted wavefield, over the 
whole transverse plane is of interest mainly because it can reflect the phase variations of the 
field from plane to plane. Eq. (5) has been used to calculate the evolution of the diffraction 
patterns for a DVL (S = 2, m = 1) around the main vortex, u = 9 (Fig. 4a) and around the first 
subsidiary vortex, u = 9.8 (Fig. 4b). In both cases the range of the sampling for the axial 

coordinate is limited to ∆u = −10
−7

. In the animated Fig. 4 each frame represent the form of 
the transverse field contours as the product of the irradiance times the phase of the wavefront 
within the range |x/a|<0.15, |y/a|<0.15. The phase variations are in the range [0,2π], while the 
intensities are normalized to the maximum value at each transverse plane. In this way, the 
relative intensity at the vortices can be directly compared. These animations show the annular 
form of the transverse intensity and also the phase rotation with the axial coordinate. Note that 
due to the form of this representation only the changes in the phase are relevant since the 
intensity didn’t change with time. The concentric rings are caused by constructive 
interferences of the different rings of the DVL. These are affected by the vortex as the whole 
diffraction pattern. 
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Fig. 3. Normalized irradiance contours computed for the lenses in Fig. 2. (a) m = 0, (b) m = 1, 
and (c) m = 3. 

 

Fig. 4. Transverse field maps (as the product of the irradiance times phase) at (a) u = 9 and (b) 
u = 9.8 computed for the lens in Fig. 1(b) with m = 1. The animations Fig. 4a.avi (Media 1, 
1.62 MB) and Fig. 4b.avi (Media 2, 2.18 MB) show the evolution of the vortices as they 
propagate along the optical axis. 

4. Conclusions 

A new type of vortex lenses, coined “devil’s vortex-lenses”, has been introduced. To avoid the 
losses that characterize the spiral fractal zone plates [5] and to improve their diffraction 
efficiency, the phase function for a typical devil’s vortex lens has a fractal blazed profile. It is 
well known that continuous phase profiles generally also have a better performance as 
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measured by the intensity uniformity. The distribution of the surface grooves of these new 
fractal lenses is obtained through the “devil’s staircase” or Cantor function. The focusing 
properties of DVL have been analyzed and compared with those corresponding to a 
conventional devil’s lens. The transverse patterns appearing along the propagation distance 
present several concatenated doughnut modes. The particular focal volume provided by DVLs 
could be profited as versatile and very efficient optical tweezers since in optical trapping 
applications in addition to rotate the trapped high index particles, the low-index particles can 
be trapped in the zero intensity region of the doughnut. The relative angular velocity of the 
particles at the different traps can be modified by the topological charge of the vortex, while 
the distances between the links of the chain depend on the level S of the Cantor function. 
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