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Role of dispersion on zero-average-index bandgaps
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We consider periodic multilayers combining ordinary positive index materials and dispersive metamaterials
with negative index in some frequency ranges. These structures can exhibit photonic bandgaps which, in con-
trast with the usual Bragg gaps, are not based on interference mechanisms. Changing the dispersion models
for the constituent metamaterial, we investigate its role in the production of zero-average-index bandgaps. In
particular, we show the effect of each constitutive parameter on both bandgap edges. Finally, we give some
approximated analytical expressions in terms of average parameters for the determination of the upper and
lower limits of the zero-average refractive-index bandgap. © 2009 Optical Society of America
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1. INTRODUCTION

Photonic crystals (PCs) are artificial composites consti-
tuted by periodic arrangements of dielectric materials.
These structures, when illuminated with an electromag-
netic wave propagating along certain directions, can
present ranges of forbidden frequencies called photonic
bandgaps (PBGs) [1]. This effect has been observed in
both one-, two-, and three-dimensional structures (see [2]
and references therein). The simplest one-dimensional
(1D) PC is the well known Bragg mirror, a periodic struc-
ture consisting of two different alternating layers of con-
ventional dielectric materials [3]. As a result of the scal-
ability of the Maxwell equations (see [2], for instance),
multiple interference of Bragg scattering underlying
those forbidden bands in the optic regime can appear at
any frequency range of the electromagnetic spectrum, and
therefore PCs can be designed to manipulate lightwave
propagation—from microwaves to X-rays. The broadness
of this phenomenon has allowed conceptual transfers be-
tween different frequency ranges, with deep implications
from both a fundamental and a technological point of
view.

Interest in PC microstructures has increased since the
appearance of metamaterials (MMs). These are new, arti-
ficially constructed composites exhibiting electromagnetic
properties that are difficult to achieve with conventional,
naturally occurring materials [4,5]. Key representatives
of this new class of materials are MMs with a negative in-
dex of refraction; such property arises in media with si-
multaneously negative electric permittivity and magnetic
permeability. These artificial materials were proposed by
Veselago some decades ago [6], but it was not until re-
cently that they were fabricated for the microwave regime
[7,8] and, through a process of miniaturization, they are
currently being made to operate in the terahertz regime
[9,10]. These composites are usually designed exploiting
the resonances of complex metallic inclusions in a homo-
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geneous dielectric matrix in such a way that, when illu-
minated by radiation of wavelength sufficiently greater
than a typical distance in the structure, they behave as
an effective homogeneous material with negative permit-
tivity and permeability in a certain frequency range.

The inclusion of MMs in PCs has given rise to new
kinds of PBGs that do not originate from interference in
the periodic structure and are fundamentally different
from the above-mentioned Bragg gaps. The first kind of
non-Bragg gap appears in multilayers combining ordi-
nary materials (positive refractive index) and MMs with
negative refractive index. When the volume-averaged re-
fractive index of the multilayer equals zero, the structure
cannot support propagating waves and exhibits a forbid-
den band [11-13]. A different kind of non-Bragg gap in
these multilayered structures emerges as a consequence
of material dispersion. When the permittivity or the per-
meability of the MM vanishes for a certain frequency, an-
other gap can appear around that frequency [14]. Unlike
zero-averaged refractive-index gaps, these gaps occur at
frequencies where only a single constituent material of
the multilayered structure intrinsically shows zero refrac-
tive index. Additionally, as shown in [14,15], zero-
permeability and zero-permittivity gaps are polarization
dependent, very robust against disorder, and they can in-
teract with the zero-averaged refractive-index PBG giving
rise to new behaviors. Despite this, dispersion is often ig-
nored when photonic structures are designed.

In this paper we investigate the importance of material
dispersion in negative-index media. In particular, we will
focus on showing how MM dispersion affects the zero-
averaged refractive-index (zero-n) bandgap limits. The
paper is organized as follows. In Section 2 the main fea-
tures of the non-Bragg gaps present in PCs with MMs are
reviewed. In Section 3 we analyze the dependence of the
zero-n bandgap limits on MM dispersion. Finally, in Sec-
tion 4 the more outstanding results are summarized. An
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exp(—iwt) time-dependence is implicit throughout the pa-
per, with @ the angular frequency, ¢ the time, and i the
imaginary unit.

2. BASIC THEORY

We consider a 1D periodic structure consisting of layers of
two different materials: a conventional dielectric with
permeability uo, permittivity €5 and thicknesses dy, and a
dispersive MM with permeability uo, permittivity e; and
thicknesses dy. The period of the structure is d=d;+ds.
The stratification direction is the y axis, and we consider
wave propagation in the x—y plane. Let the function f(x,y)
represent the z-directed component of the electric field for
the TE-polarization case (electric field parallel to the lay-
ers), and the z-directed component of the magnetic field
for the TM-polarization case (magnetic field parallel to
the layers). The waves in the periodic structure have the
form of Bloch modes whose fields satisfy the condition
flx,y+d)=£(0,y)expi(kx+Kd), where k, is the wave vec-
tor component along the layers and K is the Bloch wave
number. In order to obtain the dispersion relation for K
we have used the transfer matrix formalism [16]. In it,
the half trace of the transfer matrix characterizing the
unit cell provides K(w,k,). For two-layered periodic struc-
tures, it can be written as follows:

&= cos(Kd) = cos(k,d1)cos(kgyds)
1 |: O'2k 1y Ulka
+

2

}sin(klydosin(k%dy, (1)

Ulkzy ook 1y

where the index j=1,2 indicates the layer, o;=u; for TE
polarization or gj=¢; for TM polarization, k2 =k2—kf, and
kj=n;w/c are wave numbers in each medium with refrac-

tive iJndexes n;. The quantity ¢ determines the multilayer
band structure. It takes real values for lossless media and
real k,. Regimes where |& <1 correspond to real K and
thus to propagating Bloch waves. In regimes where |¢|
>1, K is an imaginary number; therefore the Bloch wave
is evanescent, and this regime corresponds to forbidden
bands (or gaps) of the periodic medium.

Forbidden bandgaps in the band structure are due to
several mechanisms. The usual Bragg forbidden bands of
the periodic medium occur under the following conditions
[17]:

klyd1+k2yd2 =pm, p= il,iZ, ey (23)
O'2k1y * 0'1k2y, (2b)
kydi#qm, q=1,2,... (2¢)

Unusual transmission bands, reported in [17], occur when
only conditions (2a) and (2b), but not condition (2¢), hold.

MM multilayers can also exhibit non-Bragg gaps. The
zero-permeability and zero-permittivity gaps occur at fre-
quencies where a constitutive parameter of the MM—pu,
for TE polarization or €, for TM polarization—changes its
sign, and therefore, these gaps do not depend on the
multilayer structure [14]. On the other hand, for multi-
layers comprising both positive- and negative-index dis-
persive materials, the zero-n condition will always be met
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for some particular frequency, v;, and another kind of gap
arises even if the multilayer is not periodic [18]. In the bi-
nary periodic multilayer under consideration, the zero-n
gap occurs when the conditions

klyd1+k2yd2= 0, (33)

(Tzk 1y * O'lkzy, (3b)

are simultaneously attained, which is impossible if both
layers in the unit cell have either positive or negative re-
fractive index.

It has been observed [13] that, when the frequencies in
the zero-n gap are smaller than the frequencies at which
permeability or permittivity vanish, and for small values
of the layer thicknesses d; and d,, the edges of the zero-n
gaps correspond to frequencies at which é=+1 [see Eq.
(1)]. These values are determined by the zeros of the fol-
lowing functions [13]:

dlkly deQy Uley dlkly . d2k2y

q(v) =sin cos + cos sin s
2 2 Ulka 2 2
(4a)
. dlkly d2k2y Ulka dlkly . dzkgy
r(v) =sin cos + cos sin s
2 2 O'zk ly 2 2

(4b)
since sin?(Kd/2)=q(v)r(v) [19].

3. DEPENDENCE OF ZERO-n BANDS ON
METAMATERIAL DISPERSION

The purpose of this section is to show how dispersion af-
fects the limits of these bandgaps for 1D systems includ-
ing layers of positive and negative refractive-index mate-
rials. To this end, we first analyze a binary system made
of alternating layers of air as a positive index material
(e1=p1=1) and dispersive MM with a negative index in
some frequency range. Second, we tackle the case of a ter-
nary multilayer.

In order to model the effective constitutive parameters
of the MM several expressions have been proposed de-
pending on the metamaterial composition. Different dis-
persion laws provide different numerical values, but the
same behavior for the band edges, as it is shown later. To
make clear the role of dispersion on zero-7z bandgaps, an
arbitrary, but dispersive, model can be chosen, being the
particular choice for €5 and w9 not relevant. We have as-
sumed, without loss of generality, families of Lorentz-like
models based on the following expressions to describe the
MM layers [see Eqgs. (6) and (9)]:

1.622
=1 a5 (52)
32
av)=1- 209022 (5b)

where the frequency, v=w/(2), is given in gigahertz [see
Fig. 1(a)]. Figure 1 also shows the projected band struc-
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Fig. 1. (Color online) (a) Frequency dependence of the effective
parameters uy and €, as given by Egs. (5). Note that e, and uy
become zero at different frequency values [v.=1.878 GHz and
v,=3.133 GHz (out of the plot range)]. (b) Projected band struc-
ture for TE polarization and different angles of incidence corre-
sponding to periodic stacks with air layers (e,=u;=1) and MM
layers [e; and uy shown in (a)], both of the same width (d,=d,
=6 mm). Dots represent the low-frequency limit of the zero-n
bandgap edges given by Egs. (7).

ture for TE polarization and angles of incidence ranging
from 0 to 90° of periodic stacks with air layers and MM
layers. The widths of both layers are d;=dy=6 mm for all
the binary multilayers analyzed. In Fig. 1(b), the white
region indicates a band where propagation is forbidden in
the crystal regardless of K, the Bloch wave number. It in-
cludes the frequencies at which conditions (3) are satis-
fied, i.e., it is a zero-n gap. At these particular frequencies
that allow us to label the gap (v;=1.707 GHz at normal
incidence), both constitutive parameters of the MM are
negative, although the gap can also spread over regions
where both are not.

The spectral response of MMs is often simplified as-
suming that one of the parameters, or even both, is non-
dispersive. In the latter case, the zero-n bandgap covers
all the electromagnetic spectrum if wuo(v)=i(v;) and
&(v)=€(vy) [11] or it can disappear if the zero-n condition
is not satisfied. Moreover, our analysis shows that the
process through which this bandgap arises is more com-
plex than expected and that the two constitutive param-
eters do not act in the same way over the gap limits. In
fact, in Fig. 2 we can see that each bandgap limit is ruled,
at normal incidence, by one of the constitutive param-
eters. If we just make the magnetic permeability con-
stant, we(v)=i(v;), and the dielectric permittivity disper-
sive, e9(v)=€(v), we can see that a forbidden band has only
a lower limit [Fig. 2(a)]. On the contrary, if we just make
the dielectric permittivity constant, e;(v)=¢€(v;), and the
magnetic permeability dispersive, uo(v)=/(v), the band
extends from v=0 up to an upper limit [Fig. 2(c)]. It is
worth mentioning that these limits match closely with
those obtained when both constitutive parameters are
considered frequency dependent [Fig. 2(b)].
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Fig. 2. (Color online) Half of the trace of the unit cell translation
matrix, & as given by Eq. (1), for the structure considered in Fig.
1, at normal incidence, when either ¢, (a), or w4 (c), or both (b) are
considered dispersive.

To shed light on the widening process of the zero-n gap,
we have parametrized the dispersion relations around v;
as follows:

&(v;ar) = &(vy) + al&(v) - &(vy)], (6a)

me(via,) = lvy) + e, [(v) = lvz)], (6b)

where @, and «, are real numbers. In this way, we cover a
broad range of dispersions: if .=, =1, Egs. (5) are recov-
ered, and diminishing a, or a,, this parametrization al-
lows us to reduce the dispersion of the corresponding con-
stitutive parameter and thus to follow the gap limits
evolution. In the limit, when «, or «, are zero, a nondis-
persive model is considered (see insets in Fig. 3).

The evolution of the bandgap limits with dispersion for
TE polarization and two different angles of incidence is
shown in Fig. 3. When the slope of us(v) is the only one
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Fig. 3. (Color online) Evolution of the zero-n bandgap when the
constitutive parameters, wuy(v) and e(v), change their slope
around v; [see Egs. (6)] for TE polarization and two different
angles of incidence (solid curves, 0°; dashed curves, 45°; dots,
band edge low-frequency limits). (a) @.=1 and «a, ranging from 1
to 0. (b) @,=1 and e, ranging from 1 to 0. The gray- and white-
striped zone is forbidden for one angle of incidence and allowed
for the other one. This insets show the dispersion relations for
two cases close to the limits of the considered ranges.
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reduced, by changing «,, from 1 to 0 and fixing a.=1, the
upper limit of the bandgap increases, whereas the lower
limit remains constant [see Fig. 3(a)l. On the contrary,
when a.is reduced from 1 to 0 and «, is maintained equal
to 1 (and therefore only e(v) is made less dispersive) the
lower limit of the bandgap diminishes [Fig. 3(b)]. In other
words, as it could be expected, the less dispersive are the
constitutive parameters, the wider is the zero-n bandgap,
and, in addition, the bandgap limits seem to depend sepa-
rately on each of these parameters.

The dependence of the zero-7z band edges on all the pa-
rameters can be better understood after calculating the
low frequency limit (dik1,<1 and doky,<1) of the equa-
tions ¢(v»)=0 and r(v)=0. These limits turn out to be

n=0, (7a)
(wlc)e+k2u =0, (7b)
for TE polarization, and
€=0, (8a)
(wle)? i+ k2 1=0, (8b)

for TM polarization, where €, i1, € 1, and u™T are the vol-
ume average of the dielectric permittivity, the magnetic
permeability, and their inverses, respectively. We have
found that this low frequency limit provides very good es-
timates for the zero-n bandgap edges. In Fig. 3, the rela-
tive error of the proposed approximation is about or
smaller than 1%. It is worth noticing that the dependence
of the zero-n bandgap edges on the actual dispersion pro-
file of the material constitutive parameters comes, in the
previous equations, through the four mentioned volume
averages.

On the other hand, Fig. 3 shows that the zero-n band-
gap edges have a well-defined dependence on each consti-
tutive parameter, the upper edge being ruled by x and the
lower edge by €. However, it has been evaluated for TE po-
larization considering the case in which e(v;) > uo(v;). To
study the opposite case, €(v;) < uo(v;), we introduce the
following expressions for the constitutive parameters,
again based on Eqgs. (5),

&(v;Ae) = €(v) + Ae, (9a)

mo(v;Ap) = (v) + Ap, (9b)

where Ae and Au are linked in such a way that vy, the
frequency at which 7=0, remains constant (see the inset
in Fig. 4).

Figure 4 shows the evolution of the zero-n bandgap
edges when Ay changes from 0 to 3, both at normal and
oblique incidence (0° and 45°), and for TE polarization. It
can be observed that when the transverse impedances of
both materials are matched ky,/01=ky /03 [see Eq. (3b)],
the zero-n gap vanishes. At this point, both Eqs. (7) are
simultaneously satisfied and, correspondingly, the zero-n
condition is also fulfilled at the same frequency.

Again, the low frequency limit given by Egs. (7) pro-
vides good estimates for the zero-n bandgap edges. For
the results in Fig. 4, the relative error of this approxima-
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Fig. 4. (Color online) Evolution of the zero-z gap as a function of
Ap [see Eq. (9)] for TE polarization and two different angles of
incidence (solid lines, 0°; dashed lines, 45°; dots, band edge low-
frequency limits). At Au=2.28, when the transverse impedance
matching between both materials is achieved, the zero-n gap
vanishes. Gray- and white-striped zones are forbidden for one
angle of incidence and allowed for the other one. The inset shows
the dispersion relations for the two cases in the limits of the con-
sidered range.

tion is smaller than 1%, except at normal incidence near
the region where the bandgap edge becomes nearly flat,
where the relative error grows up to 2%. It is interesting
to note that, in the case under consideration, the point at
which both bandgap edges cross does not depend on the
angle of incidence, since under these conditions o is also
equal to zero (as =0 and d;=dj).

In the previous numerical examples, nonlossy MMs
have been chosen for simplicity. However, Egs. (7) and (8)
are also valid when losses are considered. In this case, the
bandgap edges are given by the real part of their complex
roots. By way of example we analyze stacks of 30 periods
of the multilayer considered in Fig. 1(b) when dissipation
is included through a damping constant y:

1.622
; = 1 — T -5 . 10
@Y=l o5 iy (102)
32
po(v;y) =1 (10b)

T 12-0.9022 +iyv

Figures 5 show the reflectance spectra for TE polariza-
tion, different angles of incidence, and two values of y.
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Fig. 5. (Color online) Reflectance spectra of two stacks of 30 pe-
riods of the multilayer analyzed in Fig. 1(b) when a lossy MM is
considered: (a) y=0.01 GHz and (b) y=0.1 GHz. The polarization
is TE and the angle of incidence ranges from 0 to 90°.
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Fig. 6. (Color online) Projected band structure for TE polariza-
tion and different angles of incidence corresponding to two peri-
odic stacks with layers made of air (e;=u;=1), a dispersive MM
[ey(v)=€(v), and uy(v)=i(v)], and two different high-index dielec-
trics with (a) eg3=4 and u3=3 (solid lines) and (b) e3=4 and w3
=3 (dashed lines), the three of them of the same width (d,=d,
=d3=6 mm). In both cases, dots represent the low-frequency
limit of the zero-n bandgap edges given by Egs. (7). Gray- and
white-striped zones are forbidden for one case and allowed for
the other one.

Even for a value as high as 0.1 GHz, Eqgs. (7) provide good
estimates for the band edges.

To conclude this section, it is worth mentioning that the
analytical approximate expressions obtained for the
zero-n bandgap edges of binary multilayers [Egs. (7) and
(8)] can be applied to other kinds of periodic multilayers.
This can be guessed from the fact that those expressions
are written in terms of factors that do not depend explic-
itly on any detail of the multilayer structure, but only on
the €, u, €1, and u~! averages. To investigate the validity
of this prediction, we show in Fig. 6 the projected band
structure, for TE polarization and angles of incidence
ranging from 0 to 90°, of two different ternary periodic
stacks for which Eqs. (4) for ¢(v) and r(») do not hold.
These ternary stacks are made of the same dispersive
MM [ey(v)=€é(v) and wue(v)=a(v)], and two positive-index
materials (e;=u1=1, e3=2, and us=2 for the first case,
and e3=4 and wp3=3 for the second one). The three layers
have the same width (d;=dy=d3=6 mm). Again, but now
for nonbinary multilayers, Eqs. (7) provide good estimates
for the zero-n bandgap edges, the relative error being
smaller than 1.5%.

4. CONCLUSION

We have studied the role of dispersion on MM multilayers
exhibiting zero-average-index bandgaps. Our analysis
highlights the important role played by the unavoidable
(and usually strong) dispersive character of MMs, a point
that usually plays a secondary role or is even neglected.
By using Lorentz-like models to describe the MM lay-
ers, we have shown the effect of each constitutive param-
eter on each of the bandgap edges. In order to gain some
physical insight on the complex dependency of these
bandgaps on the constitutive and geometrical parameters
of the multilayer, we have obtained some analytical ap-
proximate expressions—in  terms of  average
parameters—for the bandgap edges. These expressions
are the low-frequency limit of the analytical counterparts
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for a binary multilayer, and they are also valid when lossy
MNMs are considered. However, the numerical examples il-
lustrate that those approximated limits provide very good
agreement even in the case of nonbinary periodic multi-
layers. Since those expressions are written in terms of
factors that do not depend explicitly on any detail of the
multilayer structure, we could expect their validity in
more general situations.
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