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Generalized finite difference methods require that a properly posed set of nodes exists around each node
in the mesh, so that the solution for the corresponding multivariate interpolation problem be unique. In
this paper we first show that the construction of these meshes can be computerized using a relatively
simple algorithm based on the concept of a Coatmèlec lattice. Then, we present a generalized finite
difference method which provides a numerical solution of a partial differential equation over an arbitrary
domain, using the generated meshes. The accuracy and mesh adaptivity of the method is evaluated using
elliptical equations in several domains.
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1. Introduction

The numerical methods for the solution of partial differential
equations over irregular domains, such as finite differences or fi-
nite elements, are characterized by the definition of the shape
functions used for the calculation of the derivatives of the un-
known function by interpolation. In meshless methods, the shape
functions depend only on the nodes positions and the nodal con-
nectivity, instead of being fixed for all the nodes of the mesh as in
standard techniques [1]. The list of methods referred to as mesh-
less is very large and it is continuously growing. For example,
smooth particle hydrodynamics [2], generalized finite differences
[3,4], moving least squares techniques [5], diffuse elements [6],
element-free Galerkin [7], to name only a few (a more compre-
hensive list can be found in [1]). Meshless methods are useless
without an evaluation of the nodal connectivity bounded in time
and a computational cost which grows linearly with the total num-
ber of nodes in the domain [1]. Here, a new generalized finite
difference method is introduced having such a property.

Generalized finite difference methods (GFDMs) can be applied
when either the domain, the distribution of nodes, or both, are
non-rectangular or irregular [8–10]. A major difficulty in their de-
velopment is that, to find the coefficients of the finite difference
formulae at some nodes of the mesh, a linear system of equa-
tions whose coefficient matrix may be singular needs to be solved
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[11–14]. To avoid this problem two main alternatives have been
proposed: (i) the use of polynomial fitting instead of polynomial
interpolation, as in moving least squares techniques, resulting in
over-determined systems of equations [3,12,15–17]; and (ii) the
generation of a mesh with a structure such that the finite differ-
ence stencils around each node always yield a square system of
linear equations which has a unique solution. The latter approach
has received little attention in the literature.

In the context of multivariate Lagrange interpolation, there is
an extensive research on the construction of distributions of nodes
which assure the existence and uniqueness of the interpolant.
These are called properly posed set of nodes (PPSNs) [18–20].
Among the simplest PPSNs in the plane are Coatmèlec lattices [19,
21,22], which also can be extended easily to arbitrary number of
dimensions [21].

In this paper, a new mesh generation algorithm based on a
Coatmèlec distribution of nodes is introduced, and applied in the
context of a GFDM for linear partial differential equations. The
resulting numerical method allows the control of the order of ac-
curacy and can be applied to problems whose domain is irregularly
meshed.

The remaining of this paper is organized as follows. The prob-
lem of numerical differentiation on irregular meshes is introduced
in Section 2 for further reference in the rest of the paper. Sec-
tion 3 presents a method to generate meshes which are suitable
for GFDMs. The stars, which are Coatmèlec lattices in such meshes,
are obtained using the algorithms presented in Section 4, whose
computational cost is also briefly analyzed. Section 5 discusses the
properties of the shape functions corresponding to the stars. Rep-
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resentative results of the accuracy of the GFDMs in these meshes
are provided in Section 6, where the adaptivity of the new algo-
rithm is also explored. Finally, the main conclusions and several
future lines of research work are discussed.

2. Numerical differentiation on irregular meshes

GFDMs for partial differential equations replace the continu-
ous partial derivatives in the equation by numerical differentiation
formulae based on a polynomial interpolation on a set of nodes.
These formulae are obtained as the solution of a linear system of
equations. The problem is that, depending on the nodes chosen,
this system may be singular. In this paper we show how the set of
nodes can be chosen so that a non-singular system results.

Let us recall the basics of two-dimensional numerical differenti-
ation. Let f (x, y) ∈ Cm+1(Ω) be a function with (m+1) continuous
derivatives in a domain Ω ⊂ R

2 and take a lattice (set of non-
repeated nodes) Xm = {wi}, i = 1,2, . . . , N , where wi ≡ (xi, yi) ∈
Ω and N is arbitrary. A polynomial pm(x, y) of degree at least m,
written in the canonical basis as

pm(x, y) =
m∑

j=0

j∑

l=0

xl y j−lα jl, α jl ∈ R,

interpolates the function f (x, y) on Xm if pm(wi) = f (wi), i =
1,2, . . . , N . So the coefficients {α jl} are the solution of the linear
system of equations given by

m∑

j=0

j∑

l=0

xl
i y j−l

i α jl = f (wi), (1)

whose coefficient matrix is square only if N = (m + 1)(m + 2)/2,
being in such a case a bivariate Vandermonde matrix. An in-
terpolation problem is posed with respect to a lattice Xm if the
corresponding bivariate Vandermonde matrix is non-singular (the
linear system has a unique solution) for every function f (x, y) ∈
Cm+1(R2).

The (r, s)th partial derivative of the function f (x, y) may be
approximated at a point, say wq , inside the convex hull of Xm , by
differentiation of the corresponding interpolating polynomial. This
approximation results in a linear combination of the values of the
function at the nodes of Xm , the so-called star, stencil, or cloud of
the node, i.e.,

∂r+s f (wq)

∂xr∂ ys
= ∂r+s pm(wq)

∂xr∂ ys
+ O

(
hk

q

)

=
N∑

i=1

β
q
i f (wi) + O

(
hk

q

)
, (2)

where k = m + 1 − r + s is the order of accuracy and hq =
maxN

i=2 ‖wi − wq‖∞ is the star diameter, ‖wi − wq‖∞ = max{|xi −
xq|, |yi − yq|}. The coefficients β

q
i are the solution of a linear sys-

tem of equations whose coefficient matrix is the so-called star
matrix.

The star matrix may also be determined by the method of un-
determined coefficients. Without loss of generality the node wq is
translated to the origin (0,0), hence wi = hqui , i = 2, . . . , N , with
‖ui‖ � 1, so that the Taylor series expansion of f (wi) around the
origin, up to the order m = r + s + k, is given by

f (wi) = f (0,0) +
m∑

t=1

ht
q

t∑

j=0

x̂ j
i ŷt− j

i

j!(t − j)!
∂t f (0,0)

∂x j∂ yt− j
+ O

(
hm+1

q

)
, (3)

where ui = (x̂i, ŷi). The N coefficients βi in Eq. (3) which approxi-
mate the (r, s)th partial derivative of the function are the solution
of the system of N linear equations obtained by substitution of
Eq. (3) into Eq. (2) and equating the result to that partial deriva-
tive, resulting in

N∑

i=1

x̂ j
i ŷt− j

i βi = j!(t − j)!
ht

q
δs, jδr,t− j, (4)

for all 0 � j � t � m, where δs, j is the Kronecker delta, i.e., δs, j = 1,
if s = j, and δs, j = 0, otherwise. Note that the star matrix is a
bivariate Vandermonde independent of the degree (r, s) of the
derivative, so the LU factorization is recommended for the numeri-
cal solution of Eq. (4) with different nonhomogeneous terms when
several derivatives must be calculated.

3. Mesh generation

A mesh such that the stars around each node always yield a
unique solution for either Eq. (1) or Eq. (4) requires that a PPSN
exists around every node in the mesh. Such meshes cannot be pro-
duced using standard mesh generation techniques.

It has been proven that Coatmèlec lattices are PPSNs [23]. In
this paper we make use of this fact to build an algorithm to gen-
erate meshes that are suitable for GFDMs. Below, we recall the
definition of a Coatmèlec lattice.

Definition. Let m ∈ N and N = (m + 1)(m + 2)/2, then Xm =
{wi}N

i=1 is a Coatmèlec lattice if there are m + 1 disjoint sets of
aligned nodes γ1, γ2, . . . , γm+1 such that γm contains m nodes.

From the definition of a Coatmèlec lattice and the proof pro-
vided in [23], it is clear that a mesh suitable for GFDMs can be
easily generated placing the nodes over strategically positioned
lines. This method allows the generation of meshes for practically
any domain, with the property that a Coatmèlec lattice around
each node can be found. Fig. 1 shows some examples of meshes
generated using this procedure (only a square zoom is shown in
order to highlight the lines used in their construction). In Fig. 1(a),
two sets of parallel and equally spaced lines are used, placing the
nodes at their intersections. In Fig. 1(b), a less regular distribution
is obtained perturbing the slopes of the lines slightly. In Figs. 1(c)
and 1(d), irregular meshes are produced using random lines and
locating the nodes at their intersections (c) or along the lines (d).

4. Algorithm for finding Coatmèlec lattices

To use a GFDM on an irregular mesh, it is necessary to find
a star around each node and approximate every derivative in the
partial differential equation to a given order of accuracy. In our
method, this star is a Coatmèlec lattice composed of N nodes, with
N = (m + 1)(m + 2)/2 and m = k + s + r. This section describes the
method we have used to find the Coatmèlec star around each node
wq in a mesh generated as explained in the previous section.

Finding a star around a node wq which satisfies the conditions
to be a Coatmèlec lattice requires searching for m + 1 disjoint sets
of nodes {γ1, . . . , γm+1}, each set γi containing i aligned nodes
from its neighborhood. Figs. 2 and 3 show examples of such stars
for the second order derivative to O (hq) and O (h3

q) approxima-
tions, respectively, in each of the meshes presented in Fig. 1. These
stars have been obtained using Algorithm 1, which presents the
pseudo-code for the function FindCoatmelecStar.

In order to find the Coatmèlec lattice with n lines around
a given node wq , a set Wq containing the nodes in its local
neighborhood is built, limiting the search to a circular region
of a radius chosen according to the mesh density. Then, the
function FindCoatmelecStar is invoked by the following ini-
tial call Result ← FindCoatmelecStar(Wq,n). The out-
put of the algorithm is a list of n sets of aligned nodes, i.e.,
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Fig. 1. Square zoom of meshes generated by lines obtained: (a) using two sets of parallel and equally spaced lines, (b) randomly perturbing the slopes of the lines in (a), and
(c) and (d) using random lines. The nodes are located at the intersections between the lines in plots (a), (b), and (c); and randomly along the lines in (d).

Fig. 2. Coatmèlec lattice in the meshes of Fig. 1 for a second order derivative and a first-order approximation. Nodes of the mesh are pictured by crosses. The 3 nodes in γ2

are represented with circles, the 2 nodes in γ1 with squares and the one in γ0 with a diamond.
〈{wn,1, wn,2, . . . , wn,n}, {wn−1,1, wn−1,2, . . . , wn−1,n−1}, . . . , {w1,1}〉,
where wi, j is the jth node in the ith line, with 1 � j � i, defining
the Coatmèlec lattice.

Algorithm 1 uses a backtracking or depth-first procedure [24]
to go through all the possible candidates, growing the solution one
set at a time in a recursive fashion, using the findAligned-
Nodes function. At each step in the backtracking algorithm, we
start from a given partial solution, say, 〈{wn,1, wn,2, . . . , wn,n},
{wn−1,1, wn−1,2, . . . , wn−1,n−1}, . . . , {w j,1, w j,2, . . . , w j, j}〉. Then,
we try to extend this partial solution by adding another set with
j − 1 nodes to this list. If this is possible, the algorithm recurs and
continues. Otherwise, the last set from the partial solution, i.e.,
{w j,1, w j,2, . . . , w j, j}, is removed, and another possibility for it is
attempted. The algorithm stops when a partial solution is also a
complete solution or when all possibilities have been tried and a
Coatmèlec lattice in the set Wq could not be found. Note that in
Algorithm 1, the operator a � b where a and b are arrays of nodes,
refers to the nodes which are in a but not in b.

Algorithm 1 uses the function findAlignedNodes defined
in Algorithm 2. This function is invoked by Result ← find-
AlignedNodes(pivots,Vq), where pivots is a pair of nodes
in the neighborhood of wq and Vq is the set of nodes to be pro-
cessed (those which are not part of a line which is already an
element of the solution). Its output are all nodes in Vq which be-
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Fig. 3. Coatmèlec lattice in the meshes of Fig. 1 for a second-order derivative and a third-order approximation. Mesh nodes are represented with crosses. The 5 nodes in γ4

with circles, the 4 nodes in to γ3 with squares, the 3 nodes in γ2 with the less than symbol, the 2 nodes in γ1 with diamonds and the node in γ0 with the greater than
symbol.
Table 1
Coefficients β

q
i for the stars in Fig. 2 (a)–(d) for the first-order approximation to the

second-order derivative.

i (a) (b) (c) (d)

1 −1.00 −1.06 −7.25 −3.44
2 0.00 0.01 4.05 0.80
3 0.00 −0.15 −1.07 −1.45

4 0.00 0.17 0.59 3.13
5 0.50 0.59 1.81 −1.44

6 0.50 0.45 1.87 2.40

long to the line defined by the pivots. The implementation of this
function is straightforward using a function isAligned to check
if a node belongs to the line defined by the two pivot nodes.

Once a star in Wq is found, the coefficients β
q
i are obtained

solving the linear system of Eqs. (4). For illustration purposes, the
finite difference coefficients for the stars shown in Figs. 2 and 3
are presented in Tables 1 and 2, respectively.

A desirable feature of this technique is that it is structurally
consistent, in the sense that a zoomed view of a small area in a
high density mesh presents exactly the same structure as a larger
area from another lower density mesh. The effect of increasing the
number of nodes in the accuracy of the result is determined by
the order of accuracy imposed. Doubling the number of nodes in
the mesh reduces the error by a factor of 2ρ , with ρ the order
of accuracy chosen. This effect will be shown experimentally in
Section 6.

Let us present a brief analysis of the computational cost asso-
ciated with Algorithm 1. In our current implementation, the time
required to calculate a star around a node depends on the order
of accuracy desired, the size of the local neighborhood considered
(the number of nodes in the set Wq) and the disposition of the
nodes. For a fixed order of accuracy, it is easy to establish a con-
stant upper bound for the time required to calculate a star around
a node (that required in the worst case). Therefore, the total com-
putational cost for the assembly of the global stiffness matrix is
O (T ), with T the total number of nodes in the mesh.
Table 2
Coefficients β

q
i for the stars in Fig. 3 (a)–(d) for the third-order approximation to

the second-order derivative.

i (a) (b) (c) (d)

1 −10.50 −6.46 −10.37 54.13
2 0.39 −0.25 22.73 −2.54
3 0.00 −0.20 2.15 7.24
4 0.00 −0.01 18.05 0.54
5 0.39 0.59 −3.31 −0.88

6 1.75 1.17 −72.06 6.26
7 5.25 3.16 128.06 −38.11
8 0.10 −0.16 −83.69 2.97
9 0.19 −0.68 7.69 −0.52

10 5.25 0.72 −11.41 −2.19
11 −0.29 3.30 21.11 14.02
12 −0.58 −0.61 −9.99 −43.44

13 0.00 −0.31 1.59 −1.58
14 −0.58 −0.45 −15.38 3.52

15 −1.17 0.22 4.82 0.60

A comparison between our algorithm and classical Delaunay
triangulation algorithms, e.g. [25,26], which have a computational
cost O (T · log T ) [27], shows that, independently of the order of
accuracy and the size of the neighborhood considered, it is always
possible to find a threshold size such that our algorithm perform
better than such techniques. In practice, using the current im-
plementation of our method, it would only outperform Delaunay
triangulation based algorithms for a low order of accuracy and a
large number of nodes.

On this aspect, it is worth mentioning that from Lawson’s incre-
mental insertion algorithm for Delaunay triangulation [28], related
research has been very intense and many efforts have focused on
the optimization and refinement of the original method. In this
respect, our algorithm has been implemented in Matlab and some
further improvements need to be studied. In fact, a clear advantage
of the technique proposed here is that it can be easily parallelized,
since the algorithm for finding the stars around each node can be
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Algorithm 1. Result ← FindCoatmelecStar(Wq, n).

Algorithm 2. Result ← FindAlignedNodes(pivots, Wq).
performed locally, thus being a good candidate for data partition-
ing.

Finally, let us note that the sparsity of the resulting stiffness
matrix is similar to that of the matrix for classical Delaunay trian-
gulation algorithms, hence the computational cost required for the
solution of the resulting linear system of equations are equivalent
between both techniques.
5. Shape functions

In generalized finite difference methods, the shape functions
change from node to node, corresponding to the two-dimensional
Lagrange polynomials defined by the nodes used in the stencil, i.e.,
two-dimensional polynomials with a value of unity at the expand-
ing node and zero in the other ones. For the Coatmèlec lattices,
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Fig. 4. Shape functions for the stencils in Figs. 2(a) (left plot) and 2(c) (right one). The black dots indicate the position of the nodes.

Fig. 5. Shape functions for the stencils in Figs. 3(a) (left plot) and 3(c) (right one). The black dots indicate the position of the nodes.
Gasca and Maeztu [29] have obtained a closed form expression for
these polynomials using the Newton form by means of a recursive
evaluation, cf. Eqs. (21)–(29) in Ref. [29]. For brevity, this expres-
sion is omitted here. In fact, up to the authors’ knowledge, there is
no easier way to write such Lagrange polynomials.

The “outlook” of the shape functions at each node depends
strongly on the stencil, hence they are usually not explicitly pre-
sented in the papers dealing with generalized finite difference
methods. Figs. 4 and 5 show the shape functions of the stencils in
Figs. 2(a) and 2(c), and Figs. 3(a) and 2(c), respectively. Note that
only positive values of the corresponding polynomials have been
plotted in the figures. The shape function has value one at each
node. This may be either a local maximum, as in the left plots in
Figs. 4 and 5, or not, as in the right ones in Figs. 4 and 5.

The shape functions for the stencils in Fig. 2 (shown in Fig. 4)
are quadratic, two-dimensional polynomials whose first derivatives
are piecewise linear functions and whose second derivatives are
piecewise constant. Similarly, the shape functions for the stencils
in Fig. 3 are cubic, two-dimensional polynomials. Fig. 5 shows that
such polynomials grow very fast even near the nodes of the Coat-
mèlec lattice, resulting in large values for their derivatives. Plots
showing the first and second derivatives of the shape functions
have been omitted here for the sake of brevity.

6. Presentation of results

Let us apply a generalized finite difference method based on
the algorithm developed in this paper to the solution of the elliptic
differential equation

	F (x, y) = 0, (x, y) ∈ Ω,

F (x, y) = g(x, y), (x, y) ∈ ∂Ω,
(5)

where 	 is the Laplacian and F a scalar function.
Let us take the two domains shown in Fig. 6:
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Fig. 6. Examples of irregular meshes defined on the two domains described in the text: (a) Four-leaf clover, and (b) domain with corners.

Fig. 7. 3D plots of the numerical solution for a method with second-order approximations of the derivatives. (a) Calculated on a mesh with 537 nodes, and (b) with 3198.

Fig. 8. 3D plots of the numerical solution for a method with second-order approximations of the derivatives. (a) Calculated on a mesh with 704 nodes, and (b) with 6754.
• A four-leaf clover whose boundary is defined by four circles
of radius 0.45 located at positions (0.55,0.55), (0.55,−0.55),
(−0.55,0.55), and (−0.55,−0.55), four circles of radius 0.10
at positions (0.55,0), (−0.55,0), (0,0.55) and (0,−0.55), and
an inner hole of radius 0.1 at the origin (see Fig. 6(a)).

• A polygon as shown in Fig. 6(b) obtained by cropping a rect-
angle of size 0.5 by 1.35 from a square of side 2 centered at
the origin.

These domains have been meshed by randomly perturbing the
slopes and spacing of two sets of parallel lines; the nodes have
been located along the lines of one of the sets, at a small distance
from the intersections with the lines in the other set. The resulting
meshes, shown in Fig. 6, have a uniform node density, still having
an irregular distribution.

Fig. 7 shows the numerical solution for problem (5) for the do-
main in Fig. 6(a), with g(x, y) = 20 in the outer boundary and
g(x, y) = 15 in the inner one, with a mesh generated by using 537
(left plot) and 3198 (right plot) nodes. The observed gap in the
neck of the numerical solution in the left plot is due to the lack of
graphical interpolation between the values of the solution at the
nodes. Fig. 8 shows the results for the domain in Fig. 6(b) with
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Fig. 9. Error of the numerical solution as a function of the mesh size h for the locally first-order (left plot), second-order (middle plot), and third-order (right plot) methods.

Fig. 10. Results obtained using a adapted variable density mesh (a) and the corresponding solution (b) obtained with our method.
boundary conditions obtained by linear interpolation of the values
20, 18, 20, 18, 16, and 15 assigned to the vertices of the domain,
starting from the bottom left corner and turning anti-clockwise.

The plots in Figs. 7 and 8 show a smooth numerical solution,
very accurate and without any spurious visible artifacts. Let us em-
phasize that, although Figs. 7 and 8 contain a small number of
nodes, computations have also been performed with considerably
high numbers (up to around 30,000). The number of nodes in the
plots has been decided for clarity purposes, to show the absence
of inconsistent values in the result.

One of the advantages of the generalized finite difference
method developed in this paper is the possibility to obtain a nu-
merical solution whose order of accuracy is constant throughout
the solution. Thus, although the mesh be irregular, all the stars
have exactly the same theoretical local order of approximation.
Hence, a global order of accuracy of the method, independent of
the mesh, could be expected when the node density increases.

Let us consider the numerical solution of problem (5) in a fam-
ily of meshes with a decreasing density of nodes obtained by sys-
tematically removing nodes from a very fine mesh, generated as in
Fig. 6. The position of the remaining nodes is perturbed again, ex-
cept for a number of them, whose positions are fixed so that the
error of the solution on each mesh can be determined. The nu-
merical solution at the nodes which are common to all the meshes
has been compared to the solution obtained on the finest mesh by
means of the (locally) third-order accurate method, our best ap-
proximation to the exact solution of the problem.

Fig. 9 plots the Euclidean norm of the errors of the numerical
solution at the common nodes as a function of mesh size, calcu-
lated as the mean of the star diameters, i.e. h = (

∑
hq)/T , where

hq is the star diameter of the star around node wq and T is the
total number of nodes in the mesh. Similar results have been ob-
tained using both other norms and other definitions of h, such as
the maximum star diameter in the mesh. Fig. 9 also shows the lin-
ear regression of the results. The locally first-, second-, and third-
order accurate methods present slopes 1.574, 2.028, and 3.008,
respectively, which approximate the theoretical order of accuracy.
Besides, the linear correlation factor (R2) increases with the order
of accuracy. For a first order method R2 is 0.842, for a second or-
der 0.979, and for a third order 0.996. These results, which are
representative of those obtained for a large set of numerical exper-
iments, suggest that it is possible to determine a global order of
accuracy for the method.

The good adaptivity properties of our method can be easily
illustrated, since the number of nodes in any subregion of the do-
main can be easily enlarged locally with the additional cost of only
recalculating the stencils in the nodes inside the refined region and
correspondingly enlarging the stiffness matrix. The stencils for the
nodes in the rest of the domain and the corresponding entries in
the stiffness matrix remain untouched. In fact, the increase in cost
due to adaptivity of the mesh is linear in the number of nodes
added in the mesh. Fig. 10(a) shows the mesh in Fig. 6(a) with
a large number of nodes around the inner circle, and Fig. 10(b)
shows the result obtained with the method showing an increased
accuracy in the neck of the solution.

7. Conclusions and future work

A mesh generation technique which allows the generation of
finite difference stars with the properties of a Coatmèlec lattice
in every node has been presented and applied to the develop-
ment of generalized finite difference methods for partial differ-
ential equations. In order to illustrate the technique, an elliptic
equation in two domains have been studied using several irreg-
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ular meshes. The results show the good accuracy of the method
when the mesh is refined. In fact, the constant local order of ac-
curacy of the stars results in a unique global order of accuracy of
the method. This may be considered one of the main advantages
of these GFDMs.

An important problem with the mesh generation technique
developed in this paper, which also applies to standard tech-
niques, is that the resulting global matrix of the GFDM may be
ill-conditioned when the density of the nodes in the mesh is very
inhomogeneous, even when the local matrix for each star is well-
conditioned in practice. The development of techniques for dealing
with this problem is currently a very interesting open problem.

The results presented in this paper for elliptic equations with
Dirichlet boundary conditions can be extended easily to other lin-
ear boundary conditions (Neumann or Robin). Moreover, the appli-
cation of the method developed in this paper to evolution equa-
tions, both linear and nonlinear, require the analysis of the prob-
lems of stability and convergence, outside the scope of this paper,
which constitutes a very interesting research topic for the future.

Coatmèlec lattices can be easily generalized to n dimensions by
using a recursive definition [30]: the nodes are distributed in n-
dimensional hyperplanes by means of using (n − 1)-dimensional
Coatmèlec lattices in each hyperplane. The number of nodes in the
star is a binomial coefficient related to the dimension, the order
of accuracy and the order of the derivative. The extension of our
algorithm to three-dimensions is straightforward but requires an
efficient algorithm to obtain the nodal connectivity in such a case,
currently under development.
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