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Light propagation induces remarkable changes in the spectrum of focused diffracted beams.

We show that

spectral changes take place in the vicinity of phase singularities in the focal region of spatially coherent, poly-

chromatic spherical waves of different Fresnel numbers.
We find that as a result of a decrease in the Fresnel num-

hoff integral to evaluate the focal field accurately.

Instead of the Debye formulation, we use the Kirch-

ber, some cylindrical spectral switches are geometrically transformed into conical spectral switches. © 2004

Optical Society of America
OCIS codes: 260.1960, 260.3160, 300.6170.

1. INTRODUCTION

Recently a number of papers have focused on an optical
effect characteristic of polychromatic waves that has been
called spectral switch. First the effect appeared in par-
tially coherent fields,'? but soon it was demonstrated that
this is not a correlation-induced but a diffraction-induced
effect. Propagation causes changes in the spectrum of
diffracted beams, and, in some cases these alterations
may be observed clearly in the form of spectral shifts and
spectral switches. Wolf and collaborators®~” have inves-
tigated the spectral switch effect in fully coherent beams.
In particular, they considered a polychromatic focused
scalar wave that is diffracted by a circular aperture. The
spectral distribution suffers significant distortion in the
vicinity of phase singularities, where the incident spectral
peak is split into two sidelobes. Spectral switches asso-
ciated with phase singularities are then found along the
optical axis and in the transverse focal plane. It is im-
portant to note that these results hold for high-Fresnel-
number arrangements. In contrast, it was reported that
depolarization may cause these spectral switches to dis-
appear in high-numerical-aperture lenses.?
High-Fresnel-number focal fields are evaluated by
means of the classic Debye theory. In the framework of
this formulation, the irradiance distribution presents in-
version symmetry about the geometrical focus, where the
maximum value is reached. Additionally, the locus of
spectral anomalies in polychromatic focused waves also
evidences this inversion symmetry® However, low-
Fresnel-number focal waves exhibit severe
discrepancies.’ 2 For instance, the point of maximum
irradiance is not at the geometrical focus but is shifted to-
ward the diffracting aperture. This is the so-called focal
shift. Other effects may be present in low-Fresnel-
number focusing arrangements such as focal switches!3
and inverse focal shifts.!* Instead of the Debye formula-
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tion of focused fields, we should use the Fresnel—
Kirchhoff integral to accurately evaluate the three-
dimensional amplitude distribution of the field in the
focal region.'>® In this paper we demonstrate that spec-
tral switches exist in low-numerical-aperture lenses, but
observable asymmetries are found when the Fresnel
number of the focusing geometry is close to and lower
than unity.

The organization of the paper is as follows. In Section
2 we revise the Fresnel-Kirchhoff formulation to deter-
mine the three-dimensional amplitude distribution of fo-
cal waves of different Fresnel numbers. In Section 3 we
evaluate the diffraction-induced spectral shift in the focal
region, and we find a spectral switch effect near phase
singularities. It is remarkable that by means of some di-
mensionless spatial coordinates, the relative spectral
shift does not depend on the Fresnel number of the focus-
ing setup. In Section 4 we display the spectral shift spa-
tial distribution in the vicinity of the geometrical focus of
different-Fresnel-number fields. We reproduce some pre-
vious results for high Fresnel number and find significant
deviations when the Fresnel number decreases. We also
focus our attention on nearly plane waves diffracted by an
opaque screen where the Fresnel number vanishes. This
specific case has been investigated previously,® and again
our results agree exactly. Finally, we summarize the
novel results recounted in the paper.

2. DIFFRACTION PATTERNS IN THE
FOCAL REGION

First we consider a monochromatic focused wave that is
diffracted by a circular aperture. The diffracting screen
is located in a plane transverse to the optical axis and
centered on it. The aperture radius is denoted by a, and
the distance from this diffracting aperture to the geo-

© 2004 Optical Society of America
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Fig. 1. Schematic diagram of the optical setup.

metrical focus of the spherical beam F is given by the fo-
cal distance f, as depicted in Fig. 1. The three-
dimensional amplitude distribution for a monochromatic
scalar wave in the focal region is evaluated by means of
the Fresnel-Kirchhoff diffraction integral written as'®

1 u
U(u, v) = B(u)exp ¢(u, v)f Jo(vp)eXp<—i§p2)de,
0
(1
where
zIf rla
(u, v) = 27N , (2)
1+z/f 1+ z/f

are normalized axial and transverse spatial coordinates,
assuming that the geometrical focus is located at cylindri-
cal coordinates z = 0 and r = 0. The term ¢(u, v) in-
volves a phase factor that is irrelevant in the present
study, and

277i<a)2( u )
B(u) = —T ? 1- ﬁ A(w) (3)

takes into account the attenuation of the Huygens wave-
lets emerging from all the points of the diffracting screen,
where A is the incident wave amplitude. The parameter

N = a?/\f 4)

is the so-called Fresnel number of the focusing geometry,
where N is the free-space wavelength of the incident
monochromatic radiation; it provides the number of half-
wave zones of the aperture as observed from the focus F.17

When we consider polychromatic radiation, the
squared modulus of the amplitude A(w) in Eq. (3) repre-
sents the spectral strength of the incident radiation. The
three-dimensional amplitude distribution given in Eq. (1)
explicitly depends on the frequency of the incident radia-
tion w = 2mc/\, which may be rewritten as U(u, v; )
The spatial variables u and v and the Fresnel number N
are also frequency dependent. To formulate these fre-
quency dependencies for such variables and parameters
we write the following expressions,

w
N = _NO’ (5)
o
w
(u7 U) = _(uO’ UO), (6)
@o
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where N is the Fresnel number for a characteristic fre-
quency wy. Also, ug = u(wy) and vy = v(wy). For the
following discussion note also that

B(ug; wg)
woA(wo)

i.e., the term B takes the frequency modulation of the in-
cident spectral amplitude A(w) apart from a linear factor.
The three-dimensional polychromatic irradiance distribu-
tion is determined as the squared modulus of Eq. (1) and
may be written as

S(u05 Vo, (1)) = |U(u’ v; (1))|2 = S(l)(w)M(uO’ Vo, (1)),
®

where we have introduced the spectrum of the incident
radiation as

B(u; w) = wA(w); (7

|A(w)|?

SV(w) = , )
f2

and the factor M(u, vy, w) is called the spectral modi-
fier, which is responsible for spectral alterations due to
diffraction. We assume that the incident focusing beam
has a Gaussian spectral distribution of the form

(0 — wo)z}
- (10)

S(w) = Syexp
202

where S is a constant. Thus the central frequency of
the Gaussian distribution is denoted by v, and its width
is given by o; see caption of Fig. 2. A Lorentzian spectral
distribution may also be used, and conclusions equivalent
to those of the following analysis would be obtained.

The diffraction integral given in Eq. (1) holds for the
paraxial regime, where the numerical aperture of the fo-
cusing optical system is low. Also, the Fresnel number
usually takes high values, which involves some standard
simplifications. In the vicinity of the geometrical focus,
the spatial coordinates u and v may be approximated as
linear functions of the axial and radial coordinates, re-
spectively:

(w, v) = 2aN(z/f, rla). 11)

Additionally, the term B reaches constant values in terms
of the spatial variable u. The above approximations are
taken in the Debye formulation of monochromatic focused

S%w)/S,
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Fig. 2. Gaussian power spectrum of the incident radiation.
The central value is given by w, = 10®s™! and the spectral
width is o = 1013571,
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waves.!®  Under these circumstances, the three-
dimensional irradiance distribution exhibits some
symmetries.'® The geometrical focus exhibits maximum
irradiance value in the focal region, and the irradiance
possesses inversion symmetry about the focal point.
This is responsible for the fact that a pair of transverse
irradiance patterns that are equidistant from the focal
plane have the same spatial distribution.2’ Finally, spa-
tial symmetries always appear for any frequency of the
incident radiation, assuming that the high-Fresnel-
number requirement is fully satisfied. As a consequence,
polychromatic focused waves also present the same irra-
diance symmetries about the geometrical focus.

3. POWER SPECTRUM IN THE VICINITY
OF THE GEOMETRICAL FOCUS

Equation (8) shows that propagation induces changes in
the spectrum of focused diffracted beams. Particularly
remarkable are the spectral shifts and spectral switches
found near phase singularities of high-Fresnel-number fo-
cused waves. We are interested in extending the study of
these spectral anomalies to focal waves of different
Fresnel numbers. Then we define the relative spectral
shift? in the focal region as

Sw o — wg
— = S (12)
o @o

where

w'S(uO, Vo, (l)’)d(x)’
o(ug, vg) = (13)
fs(uo, Vg, o')do’

is the first-order spectral moment, which represents the
mean value of the spectral distribution at a specific spa-
tial coordinate (u,, vy). It is remarkable that in the
uov, coordinate system the relative spectral shift does not
depend on the Fresnel number N of the focusing setup.
In this space the only dependence of S(u(, v(, @) on the
Fresnel number comes from the term B(u; w) shown in
Eq. (8). According to Eq. (7), B may be factorized into
two terms: One expresses the frequency dependence of
B, which is independent of the Fresnel number N, and
the other includes the Fresnel number of the focusing
setup but is frequency independent. As a consequence,
the Fresnel number N is an irrelevant parameter in the
evaluation of @ and consequently in the relative spectral
shift for a given pair (uy, vg). We may conclude that in
the ugv geometry, the spatial distribution of the relative
spectral shift is invariant to a change of the Fresnel num-
ber of the focal waves in the frame of the Fresnel—
Kirchhoff diffraction theory.

The relative spectral shift for the incident power spec-
trum of Fig. 2 is plotted in Fig. 3. Note that although v,
is a nonnegative spatial variable in the focal volume [see
Egs. (2) and (11)], we have made use of the axisymmetry
property of the optical arrangement, and we should inter-
pret negative values of v as points with the same trans-
verse and axial spatial coordinates, r and z, as their posi-
tive counterparts. Dramatic spectral distortions are
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Fig. 3. Gray-coded plot of the relative spectral shift dw/w, in
the focal region as a function of normalized spatial variables

u(wy) and v(wy). The spectral Gaussian parameters are given
in Fig. 2.

observed in the vicinity of phase singularities. Spectral
switches associated with these phase singularities are
found along the optical axis and in the transverse focal
plane. For example, we find a phase singularity for w,,
which is the central value of the Gaussian power spec-
trum of the incident radiation, in the first zero of the Airy
pattern given by vy = 1.2207. In Fig. 4(a) it is shown
that the spectrum distribution at this point is split into
two sidelobes. At neighboring points on the transverse
focal plane the spectrum distribution suffers pronounced
spectral shifts. The relative spectral shift takes a mini-
mum value of (6&/wg)min = —0.00996 at v™ = 1.2207
— A [see Fig. 4(b)] and a maximum value of (dw/®g) max
= +0.00978 at vg®™ = 1.2207 + A [see Fig. 4(c)], where
A = 0.01277. The overall relative spectral shift in the
neighborhood of this phase singularity gives

Wt~

max

= 0.0197, (14)

min

which involves a drastic spectral change of nearly 2% in a
region bounded by a thin ring of width vy®* — vg™ = 2A.

The power spectrum has a maximum at a frequency
that switches at points with phase singularities, which
produces a spectral discontinuity. However, we have de-
fined the relative spectral shift dw/w, given in Eq. (12) as
a continuous function. In these terms, only rapid spec-
tral changes are detectable in the neighborhood of phase
singularities. These singularities are located on the
transverse focal plane and along the optical axis, where
Sw = 0. Figure 5(a) shows the relative spectral shift in
the transverse focal plane in terms of the spatial coordi-
nate v(wy). Spectral switches are observed at points
given by v(wg) ~ (n + 1/4)m, and n is a nonzero positive
integer where phase singularities for w, are located. Fig-
ure 5(b) illustrates the relative spectral shift along the op-
tical axis in terms of the spatial coordinate u(wg). In
this case, rapid transitions of spectral shifts are observed
at u(wy) = 47m, where m is a nonzero integer where we
find phase singularities for w,. In both cases, inversion
symmetries of spectral shifts about the geometrical focus,
ug = vg = 0, are notable in the spatial representation
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ugvy. Also, note that phase singularities are not the
only points with zero spectral shift. However, only two-
lobe spectra are able to produce a true spectral switch.
This requirement also holds for Fig. 3 at points along ver-
tical lines crossing axial singularities and horizontal lines
crossing focal plane singularities.

Finally, we focus our attention on the transverse focal
plane. It is well known that the amplitude distribution
in the focal plane of a monochromatic focused wave corre-
sponds to an Airy disk pattern. Phase singularities form
circular rings, and their radii depend on the incident ra-
diation frequency. Polychromatic radiation shows that
the achromatic position of the geometrical focus F' in-
volves detuned Airy rings. This is responsible for the
great spectral changes observed in the focal plane.?
Moreover, the Fraunhofer pattern of a polychromatic
plane wave diffracted by a circular aperture presents the
same Airy pattern, and equivalent spectral shifts and
spectral switches near phase singularities are observed.®
This agrees with the fact that a diffracted plane wave

SP(w)/S,
(@
4t
3.
2-
1-
0.97 098 099 1.01 102 1.03
W/,
S°(@)/S,
b) 15}
5
0.97 098 099 1.01 1.02 1.03
/0,
S(@)/S,
15
©
10}
097 098 0.99 1 1.01 102 1.03
/o,

Fig. 4. Normalized power spectrum at transverse points u
= 0 and (a) vy = 1.2207, (b) vy = 1.220m — A, and (c) v,
= 1.2207 + A, where A = 0.0127.
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Fig. 5. Relative spectral shift (a) in the transverse focal plane
and (b) along the optical axis.

may be viewed as a zero-Fresnel-number focused wave,
and, as concluded previously, the same spectral changes
should be observed for any value of the Fresnel number.
In other words, the Fresnel number may not cause the
creation and annihilation of the remarked anomalies in
the spectra of in-focus and out-of-focus transverse planes.

4. SPATIAL ASYMMETRY OF SPECTRAL
SHIFTS AND SPECTRAL SWITCHES

Figure 3 shows that the relative spectral shift presents
symmetries about the geometrical focus F in the uyv co-
ordinate system. However, we should take into account
that these normalized spatial coordinates given in Eq. (2)
do not depend linearly on the cylindrical spatial coordi-
nates r and z. Accordingly, there exists a geometrical
mapping of the obtained three-dimensional distribution of
the relative spectral shift. This kind of spatial transfor-
mation has been previously reported?’ for the focal field
amplitude. Phase singularities in the focal region are
again located at certain points of the focal plane and
along the optical axis. Moreover, axisymmetry of the op-
tical setup guarantees that transverse in-focus singulari-
ties hold the inversion symmetry about the geometrical
focus F. Finally it is expected that the locus where
diffraction-induced spectral anomalies are observed suf-
fers lack of symmetry in terms of the axial variable z.

In Fig. 6 we plot the relative spectral shift Sw/w, by us-
ing the spatial coordinates z/f and r/a. Again, negative
values of r/a are attributed to radially symmetrical points
about the optical axis. Axial symmetries about the geo-
metrical focus F are observable in Fig. 6(a), where N,
= 100 takes a high value. This plot should be compared
with Fig. 3; the two representations give equivalent re-
sults since in this case the Debye formulation holds.
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Then Eq. (11) provides the scaling of the respective spa-
tial coordinates employed. This leads us to the relevant
conclusion that equivalent results are obtained in the
evaluation of the spectral shifts and spectral switches
shown in particular normalized spaces by using the
paraxial Debye formulation® and the more general
Fresnel-Kirchhoff diffraction theory. However, this as-
sessment cannot be generalized to the evaluation of the
three-dimensional irradiance distribution in the focal
region.?’

In Fig. 6(a) the locus of points with spectral switch ap-
proximately describes straight lines crossing phase singu-
larities for w,. For axial phase singularities these spec-
tral lines are parallel to the r/a axis. Axisymmetry of
the optical arrangement implies that these points are in
fact located at transverse planes. This situation may be

0.02

0.01

-0.02 0 0.02

-0.1 0 0.1 0.2 0.3

4

-0.005
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called plane spectral switches. Moreover, all these points
are encircled by disks, and the closest-to-focus one has a
radius r/a = 9 X 10°%. It may be demonstrated that
rla =~ 0.09/N, for a high value of the Fresnel number,
N, > 1. For phase singularities in the transverse focal
plane the spectral switches are generated as lines parallel
to the axis. Again, axisymmetry of the optical system
implies that these points are located at cylindrical sur-
faces whose radii are determined by the phase singulari-
ties for wy in the focal plane. This case may be named
cylindrical spectral switches.

The relative spectral shift for intermediate values of
the Fresnel number that are close to unity is plotted in
Figs. 6(b)—6(e). Again, abrupt changes in the spectral

shift are found. We observe that plane spectral switches
are still discernible.

However, a decrement in area of the

-0.75 -0.5

-025 0

zlf

025 0.5

0

0.75

025 0
z/f

-0.5 025 05

0 0.005

(O—0,)/w,

Fig. 6. Gray-coded plots of the relative spectral shift in the focal region for (a) a high Fresnel number N, = 100, some intermediate

Fresnel numbers:
= 0.01.

(b) Ng = 10, (¢c) Ny = 5, (d) Ny = 2, (e) Ny = 1, and (f) a nearly flat beam characterized by a Fresnel number N,
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circular region where these spectral switches are located
is notable for axial phase singularities placed between the
diffracting aperture and the geometrical focus. More-
over, zero spectral shifts are not observed at points along
horizontal lines crossing focal plane singularities. A
conical locus for zero spectral shifts establishes the spa-
tial obliquity of the spectral switches. Then cylindrical
spectral switches are geometrically transformed into coni-
cal spectral switches. The apices of all these conical sur-
faces are situated at the same point of the optical axis,
given by z/f = —1. In fact, this point belongs to the
transverse plane where the diffracting screen is placed.

Figure 6(f) displays the relative spectral shift for NV,
= 1/100. This situation corresponds to nearly plane
waves diffracted by an opaque screen. Perfect plane
waves would be characterized by a zero Fresnel number.
Thus the transverse focal plane may be viewed as the
Fraunhofer pattern of the diffracting aperture. There-
fore conical spectral switches correspond to the far-field
off-axis phase singularities of the diffracted pattern, i.e.,
phase singularities of the Airy pattern for w,. This case
has been investigated elsewhere,® and these conical spec-
tral switches were found.

5. SUMMARY

We have considered a polychromatic focused wave that is
diffracted by a circular aperture and found that for any
value of the Fresnel number, the spectrum distribution
suffers dramatic distortions in the vicinity of phase singu-
larities, where the spectrum is split into two sidelobes.
First we demonstrated that with a normalized uyv coor-
dinate system the relative spectral shift does not depend
on the Fresnel number of the focusing setup. However,
we should take into account that the normalized spatial
coordinates implicitly depend on the Fresnel number. As
a consequence, axial phase singularities in the focal re-
gion are relocated at certain points along the optical axis,
and the locus of points where diffraction-induced spectral
anomalies are observed suffers lack of symmetry about
the focus.

For high Fresnel numbers, the loci of points with spec-
tral switches are classified into two categories. The first
is called plane spectral switches since some of these
points are located at transverse planes that cross axial
phase singularities. In the second, the points are located
at cylindrical surfaces whose radii are determined by the
phase singularities in the transverse focal plane. This
class is named cylindrical spectral switches. When the
Fresnel number is decreasing, plane spectral switches are
still observable. However, cylindrical spectral switches
are geometrically transformed into conical spectral
switches, whose apices are situated at the axial point of
the diffracting screen. Finally, we focused our attention
on plane waves diffracted by an opaque screen where the
Fresnel number vanishes. Thus the transverse focal
plane may be viewed as the Fraunhofer pattern of the dif-
fracting aperture, and therefore conical spectral switches
are associated with far-field off-axis phase singularities.
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