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1. Introduction

There are some classical theorems on non-immersibility of compact riemannian
manifolds with sectional curvature bounded from above given by Tompkins,
O’Neill, Chern, Kuiper and Moore (see [3], pages 221-226). More recently,
attention has been paid to the case of immersions into a geodesic ball of a simply
connected space form, and some conditions of non-immersibility in such a ball
have been proved. In particular, estimates for the mean curvature of a complete
immersion into a geodesic ball have been obtained by Jorge and Xavier [11] and
a corresponding rigidity theorem for compact hypersurfaces has been proved by
Markvorsen [14]. In this paper we give the Kähler analogs of the theorems of
Jorge and Xavier (only for the compact case) and Markvorsen, and get some
other new results for the K̈ahler case that have no Riemannian analog.

In order to state our results we shall introduce some notation and terminology.
Given a real numberλ, let us consider the functions

sλ(t) =



sin(
√
λt)√
λ

if λ > 0

t if λ = 0

sinh(
√|λ|t)√|λ| if λ < 0

, cλ(t) =


cos(

√
λt) if λ > 0

1 if λ = 0

cosh(
√
|λ|t) if λ < 0

,

coλ(t) =
cλ(t)
sλ(t)

.

These functions satisfy the following computation rules:
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sλ
′ = cλ, cλ

′ = −λsλ, c2
λ + λs2

λ = 1, s4λ = sλcλ, c4λ = c2
λ − λs2

λ.

Let M be a K̈ahler manifold of real dimension 2n, with Riemannian metric
〈 , 〉, and almost complex structureJ , and letp be a point ofM . Let M be
a compact Riemannian manifold of dimensionm and let/υ : M −→ M be an
isometric immersion. Letr : M −→ IR be the distance top in M , and denote
also byr the compositionr ◦ /υ. Let us denote by∂r the gradient ofr in M , and
by ∂>r the vector field onM defined by∂>r (q) = /υ−1

∗ (℘q(∂r (/υ(q)))) for every
q ∈ M , where℘q denotes the orthogonal projection℘q : T/υ(q)M −→ /υ∗TqM .

If f : IR −→ IR is any function,f (r ) will denote the compositionf ◦ r :
M −→ IR.

Let us denote bycut(p) the set of cut points ofp in M . Let R(r ) be the
(1, 1)-tensor field onM − cut(p) defined by

R(r )A = R(∂r ,A)∂r , for all vector fieldsA on M − cut(p),

whereR is the curvature tensor ofM , and letRλ(r ) be the corresponding operator
on the complex space formIK n(λ) of constant holomorphic sectional curvature
4λ (IK n(λ) = ICPn(λ) if λ > 0 andIK n(λ) = ICH n(λ) if λ < 0). Let us denote also
by R(r ), Rλ(r ) the quadratic forms associated to these operators and the metrics
on M or IK n(λ).

Let c(p) be the cut distance fromp in M . For everyt < min{c(p), π
2
√
λ
}, if

λ > 0, and everyt < c(p), if λ ≤ 0, we shall define the “transplanted” operator
Rλ(r ) of Rλ(r ) in M in the following way: letφ : Tp′ IK n(λ) −→ TpM be a
holomorphic isometry, then

Rλ(r )A(q) = τ t ◦φ ◦ τ−1
t ◦Rλ(r ) ◦ τt ◦φ−1(τ−1

t A), t = distance (p, q) in M ,

whereτ t is the parallel transport along the minimizing geodesicγ of M from p to
q andτt is the parallel transport along the minimizing geodesic expp′sφ−1(γ′(0))
of IK n(λ) from p′ to expp′ tφ−1(γ′(0)).

Given two quadratic forms,A and B, we shall say thatA ≥ B if A− B is
positive semidefinite.

In the following, N M will denote the normal bundle onM associated to
the immersion/υ, and we shall denote byJ both the almost complex structure
of the complex manifoldM and the one induced by this on the vector bundle
N M ⊕ TM .

From now on,ρ will denote a positive real number satisfyingρ < min{c(p),
π

2
√
λ
} if λ > 0 andρ < c(p) if λ ≤ 0.

We shall denote byBλ,n
ρ a geodesic ball ofIK n(λ) of radiusρ and by∂Bλ,n

ρ

the corresponding geodesic sphere.
Our first theorem is the following K̈ahler version of Jorge and Xavier (com-

pact case) and Markvorsen theorems. LetH denote the mean curvature associated
to the immersion/υ, Bρ(p) the geodesic ball of radiusρ and centrep in M , and
∂Bρ(p) the geodesic sphere; then we have

Theorem 1.1. Let us suppose that R(r ) ≤ Rλ(r ) in Bρ(p), /υ(M ) ⊂ Bρ(p), and
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m|H | ≤ (m− 1)coλ(ρ) + co4λ(ρ).

Whenλ ≤ 0, let us assume, also, that JN M ⊂ TM . Then/υ(M ) ⊂ ∂Bρ(p),
m H = −{(m− 1)coλ(ρ) + co4λ(ρ)}∂r , and J∂r is tangent to/υ(M ) at each point.

If m = 2n−1, then Bρ(p) is isometric to a geodesic ball of radiusρ in IK n(λ),
M is isometric to∂Bλ,n

ρ and /υ is an embedding.

Let us observe that the upper bound on|H | implies that, forλ > 0, ρ must
be not greater than the first zero ofm cos2(

√
λt)− sin2(

√
λt).

We remark, also, that the conditionJN M ⊂ TM for λ < 0 is automatically
fulfilled when m = 2n − 1.

Whenλ < 0 andρ tends to infinity, we have, as a consequence of Theorem
1.1, that there is no isometric immersion of a compact riemannian manifold in
ICH n(λ) satisfying|H | < (m + 1)

√|λ| andJN M ⊂ TM .
Some of the new results that appear in the Kähler case are described in the

following corollaries. HereΠ : ∂Bλ,n
ρ −→ ICPn−1(1/s2

λ(ρ)) denotes the Hopf
fibration on the geodesic sphere∂Bλ,n

ρ (see Sect. 4 for a description of it).

Corollary 1.2. Let M be of dimension2n − 2. Let us suppose thatM = IK n(λ),
/υ(M ) ⊂ Bλ,n

ρ and (2n − 2)|H | ≤ (2n − 3)coλ(ρ) + co4λ(ρ). Whenλ ≤ 0, we
assume also that JN M ⊂ TM . Then there is a compact riemannian manifold
G of dimension2n − 3, a riemannian submersionπ : M −→ G, and a minimal
immersionϕ : G −→ ICPn−1(1/s2

λ(ρ)) such thatΠ ◦ /υ = ϕ ◦ π. Moreover,
/υ(M ) = Π−1(ϕ(G)).

Corollary 1.3. Let M and /υ be as in Corollary 1.2, but with n= 2. Then
/υ : M −→ IK 2(λ) is an isometric immersion of a flat torus in IK2(λ), such that
/υ(M ) is an embedded torus and also a tubular hypersurface of radius(π/4)sλ(ρ)
around an integral curve of J∂r in ∂Bλ,2

ρ .

A look at the proof of Corollary 1.3, that we shall see in Sect. 4, shows that the
only minimal embedded compact surfaces of∂Bλ,n

ρ containing the integral curves
of J∂r (or, equivalently, being totally real inIK 2(λ)) are the tubes mentioned
therein. This gives some support to the “conjecture” that there are only a finite
number of these embeddings (cfr. [1]).

We shall prove Theorem 1.1 in Sect. 3 and its corollaries in Sect. 4. Section
2 is devoted to some preliminary computations.

The bound (m− 1)coλ(ρ) + co4λ(ρ) is the lowest possible sum of principal
curvatures of∂Bλ,n

ρ whenλ > 0 and the biggest one forλ < 0. This explains
that, forλ < 0, we have to add the conditionJN M ⊂ TM to get rigidity, and
poses the problem of existence of immersions without this condition and lower
bounds on the mean curvature. Then, in Sect. 5 we give a theorem on immersions
in the complex hyperbolic space (Theorem 5.1) without the above condition but
with a lower bound on|H | (the minimum possible sum of principal curvatures
of ∂Bλ,n

ρ whenλ < 0).
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We wish to thank M. Barros, A. Ros, and F. Urbano for their helpful com-
ments.

2. A formula for the laplacian (in M ) of a function which is radial in M

From now on, since all the computations are local, we shall denote by the same
symbol local sections ofTM ⊕ N M , the corresponding local vector fields on
M along/υ, and their local extensions to local vector fields onM .

We denote byS(r ) the (1, 1)-tensor field onM − cut(p) defined by

S(r )(A) = −∇A∂r for everyA tangent toM − cut(p),

The following formula is well known (cfr. [9])

∇2
r (A,B) = −〈S(r )A,B〉 for everyA,B tangent toM − cut(p), (2.1)

which implies
∆r = tr S(r ). (2.2)

Let us observe thatS(r )∂r = 0 andS(r ) restricted to the tangent space to the
geodesic sphere∂Bρ(p) of M of centrep and radiusρ is the Weingarten map of
this sphere, and trS(r ) is (2n − 1) times the mean curvature of this sphere.

On the other hand, an easy computation (see [10]) shows that

∇2r (X,Y) = ∇2
r (X,Y) + 〈α(X,Y), ∂r 〉 (2.3)

for everyX, Y tangent toM , whereα denotes the second fundamental form of
the immersion/υ : M −→ M .

If {ei }m
i =1 is a local orthonormal frame of vector fields tangent toM andH

denotes the mean curvature ofM , from (2.1) and (2.3), it follows that

∆r =
m∑

i =1

〈S(r )ei , ei 〉 −m〈H , ∂r 〉. (2.4)

If f : IR −→ IR is any C2 function, we consider the functionf (r ) = f ◦ r :
M −→ IR. Then, it follows from (2.4) that

∆f (r ) = −f ′′(r )|∂>r |2 + f ′(r )

{
m∑

i =1

〈S(r )ei , ei 〉 −m〈H , ∂r 〉
}
. (2.5)

WhenM = IK n(λ), we denote bySλ(r ) the operatorS(r ). Let us denote also
by S(r ), Sλ(r ) the quadratic forms associated to these operators and the metrics
on M and IK n(λ) respectively. The transplanted operatorSλ(r ) on M is defined
from Sλ(r ) in the same wayRλ(r ) is defined fromRλ(r ). The following Lemma
is essentially well known
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Lemma 2.1. LetM be a K̈ahler manifold of real dimension2n, such that, for some
p ∈ M , R(r ) ≤ Rλ(r ) in Bt (p) for some t≤ c(p) if λ ≤ 0, and t ≤ min{c(p),
π√
λ
}, if λ > 0; then

S(r ) ≤ Sλ(r ) for everyq ∈ Bt (p). (2.1.1)

Moreover, if the equality in (2.1.1) holds in∂Bρ(p), for someρ < t , then there
exists a holomorphic isometry between Bρ(p) and Bλ,nρ which takes∂Bρ(p) onto
∂Bλ,n

ρ .

Proof . The inequality (2.1.1) is proved in [9], [16] and [4], while the character-
ization of the equality can be seen in [12] or [5].

On the other hand, the expression forSλ(r ) is the following (cfr. [6], page
138):

Sλ(r )∂r = 0, Sλ(r )J∂r = −co4λ(r )J∂r , andSλ(r )X = −coλ(r )X (2.6)

for everyX orthogonal to∂r andJ∂r .
Then, under the hypotheses of Theorem 1.1, using (2.5) and (2.6), and the

inequality of Lemma 2.1, we have, iff ′ ≥ 0,

∆f (r ) = −f ′′(r )|∂>r |2 + f ′(r )

{
m∑

i =1

〈S(r )ei , ei 〉 −m〈∂r ,H 〉
}

≤− f ′′(r )|∂>r |2 + f ′(r )

{
m∑

i =1

〈Sλ(r )(ei − 〈ei , ∂r 〉∂r − 〈ei , J∂r 〉J∂r ), ei 〉
}

+ f ′(r )

{
m∑

i =1

〈Sλ(r )(〈ei , J∂r 〉J∂r ), ei 〉 −m〈∂r ,H 〉
}

=− f ′′(r )|∂>r |2 + f ′(r )

{
m∑

i =1

−coλ(r )〈ei − 〈ei , ∂r 〉∂r − 〈ei , J∂r 〉J∂r , ei 〉
}

+ f ′(r )

{
m∑

i =1

{−co4λ(r )|〈ei , J∂r 〉|2} −m〈∂r ,H 〉
}

=− f ′′(r )|∂>r |2 + f ′(r ) coλ(r )|∂>r |2
+ f ′(r ){(−co4λ(r ) + coλ(r )) |(J∂r )>|2 −m coλ(r )−m 〈∂r ,H 〉}

=(−f ′′(r ) + f ′(r )coλ(r )) |∂>r |2 + f ′(r )λ
sλ
cλ

(r ) |(J∂r )>|2

−mf ′(r ) (coλ(r ) + 〈H , ∂r 〉).
(2.7)
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3. Proof of Theorem 1.1

Caseλ > 0
We take asf the solutionf = −(1/λ)cλ of the equation

−f ′′ + f ′
cλ
sλ

= 0

and taking account of|(J∂r )>| ≤ 1 and|〈∂r ,H 〉| ≤ |H |, we get, from (2.7),

∆(−(1/λ)cλ(r )) ≤ λ
sλ(r )2

cλ(r )
−mcλ(r ) + msλ(r )|H |. (3.1)

Now, from the hypothesis on|H | and the fact that the function (m−1)(cλ/sλ) +
(c4λ/s4λ) is decreasing on the interval (0, ρ), we have

∆(−(1/λ)cλ(r )) ≤ λ
sλ(r )2

cλ(r )
−mcλ(r ) + sλ(r )

(
(m− 1)

cλ(r )
sλ(r )

+
c4λ(r )
s4λ(r )

)
= 0.

(3.2)
From Hopf principle, this implies that∆(−(1/λ)cλ)(r ) = 0, and hence the

inequalities in (2.7), (3.1), and (3.2) must be equalities. Then, the functionr :
M −→ IR must be the constantρ, which amounts to say that/υ(M ) ⊂ ∂Bρ(p),
|(J∂r )>| = 1 (i.e.J∂r is tangent toM ), 〈H , ∂r 〉 = −|H | and|H | = (m−1)coλ(ρ)+
co4λ(ρ) (i.e. H = {−(m− 1)coλ(ρ)− co4λ(ρ)}∂r ).

If m = 2n−1, /υ(M ) = ∂Bρ(p), and the equality in (2.7) impliesS(r ) = Sλ(r )
in Bρ(p), and from Lemma 2.1 we get thatBρ(p) is isometric to a geodesic ball of
radiusρ in IK n(λ). From these facts it follows that/υ is a local isometry between
M and∂Bλ,n

ρ . Then (cfr. [3], page 150)/υ is a riemannian covering, but, since
∂Bλ,n

ρ is simply connected,/υ must be an isometry. This finishes the proof of
Theorem 1.1 whenλ > 0.

Caseλ ≤ 0
Given any vector subbundleE of the pullback/υ∗(TM ) of TM by /υ, let us

denote byπE the projector onE. SinceJN M ⊂ TM , we have

|∂>r |2 + |(J∂r )>|2 = 1−|πN M (∂r )|2 + 1−|πJN M (∂r )|2 = 2−|πN M⊕JN M ∂r |2.
(3.3)

Now, let us take asf the solutionf = −(1/(4λ))c4λ (or f = 1
2t2 if λ = 0) of

the equation

−f ′′ + f ′
cλ
sλ

= f ′λ
sλ
cλ
.

Then, using (3.3), the hypothesisλ ≤ 0, and the other facts we used whenλ > 0,
we get

∆

(
− 1

4λ
c4λ

)
≤ λs2

λ(2− |πN M⊕JN M ∂r |2)−mc2
λ −msλcλ〈H , ∂r 〉

≤ λs2
λ −mc2

λ + msλcλ|H | ≤ 0

(3.4)

From (3.4), the theorem follows by an argument similar to that of the caseλ > 0.
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4. Proof of Corollaries 1.2 and 1.3

To begin with, let us recall the definition of the Hopf fibrationΠ : ∂Bλ,n
ρ −→

ICPn−1(1/(s2
λ(ρ))). Let p be the centre of∂Bλ,n

ρ , let expp be the exponential map
TpIK n(λ) −→ IK n(λ), and letS2n−1 denote the unit sphere inTpIK n(λ). From
the knowledge of the Jacobi fields ofIK n(λ) it follows that, for everyξ ∈ S2n−1,
expp∗ρξJξ = s4λ(ρ)J∂r (expp(ρξ)) and, for everyX,Y ∈ TξS2n−1 orthogonal to
Jξ, expp∗X and expp∗Y are orthogonal toJ∂r and satisfy〈expp∗X, expp∗Y〉 =
s2
λ(ρ)〈X,Y〉 andexpp∗JX = sλ(ρ)Jexpp∗X. From now on we shall call horizontal

vectors those inS2n−1 orthogonal toJξ and also those in∂Bλ,n
ρ orthogonal to

J∂r . If we scale the metric ofS2n−1 by multiplying by s2
λ(ρ), we have that expp

is an isometry on horizontal vectors which commutes withJ . Furthermore, it is a
dilation of factorc2

λ(ρ) on the vertical vectors, and it preserves the orthogonality
between horizontal and vertical vectors. Then, if we consider the Hopf mapF :
S2n−1 −→ ICPn−1(1/(s2

λ(ρ)), thenΠ = F ◦ exp−1
p : ∂Bλ,n

ρ −→ ICPn−1(1/(s2
λ(ρ))

is still a riemannian submersion which, restricted to horizontal vectors, commutes
with J , and it is also called the Hopf fibration. The fibres of this submersion are
the integral curves ofJ∂r , which are closed geodesics of length 2πs4λ(ρ).

Now, we are going to prove Corollary 1.2. Letm = 2n−2. A key observation
is that the conditionJ∂r ∈ TM implies that the integral curves of the vector field
J∂r which are in∂Bλ,n

ρ and have some point in/υ(M ) are completely contained
in /υ(M ). More precisely: ifc is an integral curve ofJ∂r in M , thenc̃ = /υ ◦ c is
an integral curve ofJ∂r in ∂Bλ,n

ρ , and hence it is a closed geodesic in∂Bλ,n
ρ . If

p ∈ c̃(IR), then/υ−1(p) is finite, because/υ is an immersion andM is compact.
Thenc is closed (otherwise,/υ−1(c̃(0)) would be infinite becausẽc is closed). All
the integral curves ofJ∂r in M being closed, and hence compact, they determine
a regular foliationF on M which defines a quotient manifoldG = M /F of
dimension 2n − 3.

Now we claim that we can define a metric onG so that the quotient mapπ :
M −→ G be a riemannian submersion. In fact, for everyq ∈ M , we consider the
orthogonal decompositionsTqM = TqF ⊕Hq andT/υ(q)∂Bλ,n

ρ = <J∂r> ⊕H/υ(q)

defining the distributionsH and H (<J∂r> is the 1-dimensional distribution
generated byJ∂r ). From Theorem 1.1,/υ is an isometric immersion fromM
into ∂Bλ,n

ρ , and this implies that/υ∗q(Hq) ⊂ H/υ(q). SinceΠ is a riemannian

submersion with fibres the integral curves ofJ∂r , if φ̃t denotes the flow of the
vector fieldJ∂r in ∂Bλ,n

ρ , then φ̃t∗ takes the distributionH isometrically into
itself. Moreover, ifφt is the flow ofJ∂r in M , then the above argument showing
that c̃ = /υ ◦ c says that/υ ◦φt = φ̃t ◦ /υ and/υ∗ ◦φt∗ = φ̃t∗ ◦ /υ∗. From these facts it
follows easily thatφt∗ is an isometry fromHq onto Hφt (q). This shows that the
metric we claimed can be defined. We will considerG endowed with this metric.

Since the images by/υ of the leaves ofF are the fibres of the Hopf submer-
sion Π, we can define the isometric immersionϕ : G −→ ICPn−1(1/s2

λ(ρ)) by
ϕ(π(x)) = Π(/υ(x)). This definition and the fact that the fibres of the submersion
Π are the integral curves ofJ∂r in ∂Bλ,n

ρ implies thatΠ−1(ϕ(G)) = /υ(M ).



110 F.J. Carreras et al.

In order to prove thatϕ is minimal, we will first show that the immersion
/υ : M −→ ∂Bλ,n

ρ is minimal.
Let us observe that, forλ > 0, the hypothesism = 2n − 2 implies that

the conditionJN M ⊂ TM is also satisfied. In fact, we know that, onM ,
∂r ∈ N M and J∂r ∈ TM . Now, let X ∈ N M and assume it is orthogonal
to ∂r . We have〈JX, ∂r 〉 = −〈X, J∂r 〉 = 0 and, obviously,〈X, JX〉 = 0, then
JX ∈ TM , and the claim is proved.

Now, let {e2n−1 = ∂r , e2n} be a local orthonormal frame ofN M . The
remark above allows us to take a local orthonormal frame ofTM of the form
{e1 = J∂r , e2 = Je2n, e3, ..., e2n−2}.

If α is the second fundamental form of the immersion/υ : M −→ IK n(λ),
then, denoting by⊥ the component orthogonal toM of any vector, we have

α(J∂r , J∂r ) = (J∇J∂r ∂r )⊥ = (J (co4λ(ρ)J∂r ))⊥ = −co4λ(ρ)∂r . (4.1)

Since/υ(M ) ⊂ ∂Bλ,n
ρ (p), we can consider the second fundamental formsα̃ of

the immersion ofM in ∂Bλ,n
ρ (p) and ˜̃α of the immersion of∂Bλ,n

ρ (p) in IK n(λ).
Then

2n−2∑
i =1

α̃(ei , ei ) =
2n−2∑

i =1

{α(ei , ei )− ˜̃α(ei , ei )}

= (2n − 2)H − {−co4λ(ρ)− (2n − 3)coλ(ρ)}∂r = 0,

(4.2)

i.e., the immersion ofM in ∂Bλ,n
ρ is minimal, but this implies thatϕ : G −→

ICPn−1(1/s2
λ(ρ)) is minimal (cfr. [13], Lemma 2). This finishes the proof of Corol-

lary 1.2.
Corollary 1.3 follows from 1.2. In fact, ifn = 2, G has dimension 1 and

is compact, then, the minimal immersionϕ is the parametrization of a closed
geodesic ofICP1(1/s2

λ(ρ)), which is a great circle, that is, a geodesic sphere of
radius (π/4)sλ(ρ) around some pointq ∈ ICP1(1/s2

λ(ρ)), then/υ(M ) = Π−1(ϕ(G))
is a tubular hypersurface of∂Bλ,n

ρ of radius (π/4)sλ(ρ) aroundΠ−1(q), which
is an integral curve ofJ∂r . From the facts thatϕ(G) is a geodesic,/υ(M ) =
Π−1(ϕ(G)) andΠ is a riemannian submersion with totally geodesic fibres, it
follows thatM has two orthogonal totally geodesic foliations, so it is locally the
product of two curves and, therefore, it is flat and since it admits two globally
well defined linearly independent vector fields, it is a torus. To end the proof we
observe that/υ : M −→ /υ(M ) is a local isometry, then (cfr. [3], page 150) it is a
riemannian covering, andM must be also a flat torus.

5. Further results

Theorem 1.1 is, in some sense, complete forM of codimension 1 orM of any
codimension andλ > 0. However, forλ < 0 andM of codimension greater than
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1, the additional conditionJN M ⊂ TM lead us to think that there could be
immersions/υ : M −→ ICH n(λ) which do not satisfy the above condition, but
having its image contained in a geodesic ball of radiusρ and the maximum of
the norm of its mean curvature strictly less than (1/m){(m−1)coλ(ρ)+co4λ(ρ)}.
The next proposition shows that this maximum of|H | must be strictly greater
thancoλ(ρ) for “small” codimension and greater than or equal tocoλ(ρ) for “big”
codimension.

Theorem 5.1. Let M be a compact Riemannian manifold of dimension m. Let
/υ : M −→ ICH n(λ), λ < 0, be an isometric immersion such that/υ(M ) ⊂ Bλ,n

ρ

and |H | ≤ coλ(ρ). Then1≤ m ≤ n−1, |H | = coλ(ρ) and there exists a minimal
totally real isometric immersionϕ : M −→ ICPn−1(1/s2

λ(ρ)) such that/υ is a
lifting of ϕ byΠ.

Proof . Taking f = −(1/λ)cλ in (2.7), we get

∆

(
−1
λ

cλ

)
≤ λ

s2
λ

cλ
|(J∂r )>|2 −mcλ −m〈H , ∂r 〉sλ ≤ −m cλ + m |H |sλ ≤ 0.

Again by Hopf principle, the above inequalities must be equalities, and hence
(a) ∂r , J∂r ∈ N M , and
(b) H = −coλ(ρ)∂r .

These conditions imply that
(c) the immersion/υ is minimal in ∂Bλ,n

ρ .
/υ∗(TM ) must be orthogonal to∂r and J∂r . Let O be the tensor of the rie-

mannian submersionΠ defined on horizontal vectors byOXY = (1/2)v[X,Y ],
v being the projection onto the vertical distribution (in this case, the projection
on <J∂r>). It is well known that, for horizontal basic vector fieldsX, Y , one
hasOXY = v∇̃XY , where∇̃ is the riemannian connection on∂Bλ,n

ρ (see [15] or
[7]). Then, denoting bỹα the second fundamental form of∂Bλ,n

ρ in ICH n(λ), and
taking asX, Y the restriction to/υ∗(M ) of local horizontal basic vector fields,
we get

1
2
v[X,Y ] = OXY = v∇̃XY = 〈∇XY , J∂r 〉J∂r = −〈∇X (JY), ∂r 〉J∂r

= 〈α̃(X, JY), ∂r 〉J∂r = −coλ(ρ)〈X, JY〉J∂r .

Then v[X,Y ] = 0 if and only if 〈X, JY〉 = 0. Since the Lie bracket of two
local vector fields tangent to/υ∗(TM ) must be tangent to/υ∗(TM ), we find that,
for all X,Y tangent to/υ∗(M ), 〈X, JY〉 = 0, i.e., JTM ⊂ N M , which implies
1≤ m ≤ n−1. Finally, we only need to observe that the conditionJTM ⊂ N M
is equivalent to say thatΠ∗(/υ∗q(M )) is totally real inTΠ(/υ(q))ICPn−1 for every
q ∈ M and condition (c) is equivalent to say thatΠ(/υ(M )) is minimal in ICPn−1

([13]).

Remark .Forn = 2, the above theorem says that the only isometric immersions in
ICH 2(λ) contained inBλ,2

ρ with |H | ≤ coλ(ρ) are horizontal geodesics of∂Bλ,2
ρ .
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I. Castro and F. Urbano [2] have classified all the totally real minimal tori inICP2

which are invariant under a 1-parameter group of holomorphic isometries. This
provides examples of immersions satisfying the hypotheses of Theorem 5.1, for
n=3 and m=2.

Let us observe that

m coλ(ρ) < (m− 1)coλ(ρ) + co4λ(ρ) if λ < 0

and

m coλ(ρ) > (m− 1)coλ(ρ) + co4λ(ρ) if λ > 0

For the caseλ < 0 we have got a Theorem (5.1) with the smaller bound
m coλ(ρ) and another Theorem (1.1) with the greater bound, the latter with the
additional restriction thatJN M ⊂ TM . This condition has the effect of making
J∂r tangent to the image ofM .

For λ > 0, the bound given in Theorem 1.1 is the smaller one. Then it is
natural to ask if there is another theorem with the greater boundm coλ(ρ), with
some additional hypothesis. As in the case of negativeλ, this condition must force
the image ofM to be tangent to the directions of maximal normal curvature in
the geodesic sphere ofIK n(λ). For λ > 0 the direction having minimal normal
curvature isJ∂r , which then should be avoided. Thus, the natural condition would
beJN M ⊂ N M , i.e. that/υ be a complex immersion. But it is known (cfr. [8])
that a compact K̈ahler submanifold immersed inICPn(λ) intersects every totally
geodesic complex hypersurfaceICPn−1(λ) in ICPn(λ), and therefore it cannot be
contained in any proper geodesic ball.
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