Math. Z. 225, 103-113 (1997)

Mathematische
Zeitschrift

© Springer-Verlag 1997

Immersions of compact riemannian manifolds
into a ball of a complex space form

Francisco J. Carreras', Fernando GiméneZ, Vicente Miquel*

1 Departamento de Geomigtry Topologa, Universidad de Valencia, Burjasot (Valencia) Spain
2 Departamento de Matéatica Aplicada, E.T.S.I. Industriales, Universidad Flitica de Valencia
(Valencia), Spain (e-mail: carreras@uv.es)

Received 21 December 1994; in final form 19 June 1995

1. Introduction

There are some classical theorems on non-immersibility of compact riemannian
manifolds with sectional curvature bounded from above given by Tompkins,
O'Neill, Chern, Kuiper and Moore (see [3], pages 221-226). More recently,
attention has been paid to the case of immersions into a geodesic ball of a simply
connected space form, and some conditions of non-immersibility in such a ball
have been proved. In particular, estimates for the mean curvature of a complete
immersion into a geodesic ball have been obtained by Jorge and Xavier [11] and
a corresponding rigidity theorem for compact hypersurfaces has been proved by
Markvorsen [14]. In this paper we give theaKler analogs of the theorems of
Jorge and Xavier (only for the compact case) and Markvorsen, and get some
other new results for the &ler case that have no Riemannian analog.

In order to state our results we shall introduce some notation and terminology.

Given a real numbek, let us consider the functions

Sin\(/\ﬁ:\t) FA>0 cos(/At) if A >0
s\(t)=q tifA=0 , o aM=q1ifr=0 :
sinh(y/|A[t) 2 <0 cosh/|AJt) if A <0
VIA
cox(t) = 38

These functions satisfy the following computation rules:
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Let M be a Kahler manifold of real dimensionn2 with Riemannian metric
(, ), and almost complex structurk and letp be a point ofM. Let M be
a compact Riemannian manifold of dimensionand lety : M — M be an
isometric immersion. Let : M — R be the distance tp in M, and denote
also byr the compositionr op. Let us denote by, the gradient of in M, and
by 9, the vector field onM defined byd," (q) = v, 1(pq(0r (¥(q)))) for every
q € M, wherepq denotes the orthogonal projectigr : TyqM — p.TqM.

If f : R — R is any function,f(r) will denote the compositiofi o r :
M — R.

Let us denote bycut(p) the set of cut points op in M. Let R(r) be the
(1, 1)-tensor field orM — cut(p) defined by

R(r)A =R(d:,A)0;, for all vector fieldsA on M — cut(p),

whereR is the curvature tensor &, and letR, (r) be the corresponding operator
on the complex space foril{ "(\) of constant holomorphic sectional curvature
4\ (K"(\) =CP"(\) if A > 0 andK"(\) =CH"(\) if A < 0). Let us denote also
by R(r), R\(r) the quadratic forms associated to these operators and the metrics
onM or K"(\).

Let c(p) be the cut distance from in M. For everyt < min{c(p), 2%}, if
A >0, and evernyt < c(p), if A <0, we shall define the “transplanted” operator
Ra(r) of Ry\(r) in M in the following way: let¢ : TyK"(A) — TpyM be a
holomorphic isometry, then

RA(NA(Q) = Tropor LoRy\(r) om0 (A, t = distance§,q) in M,

wherer is the parallel transport along the minimizing geodesaf M from p to
g andr is the parallel transport along the minimizing geodesicpfsqn‘l(w’(O))
of K"()) from p’ to exp,t¢~(7/(0)).

Given two quadratic formsA and B, we shall say thaA > B if A—B is
positive semidefinite.

In the following,. /"M will denote the normal bundle oM associated to
the immersiony, and we shall denote by both the almost complex structure
of the complex manifoldV and the one induced by this on the vector bundle
AM @ TM.

From now on,p will denote a positive real number satisfyipg< min{c(p),

2%} if A>0andp <c(p)if A <O.

We shall denote by,-" a geodesic ball oK "()) of radiusp and byoB)-"
the corresponding geodesic sphere.

Ouir first theorem is the following &hler version of Jorge and Xavier (com-
pact case) and Markvorsen theorems. Hedenote the mean curvature associated
to the immersiory, B,(p) the geodesic ball of radiys and centrep in M, and
0B,(p) the geodesic sphere; then we have

Theorem 1.1. Let us suppose that(R) < Rx(r) in B,(p), »(M) C B,(p), and
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mIH | < (m — 1)cox(p) + coun(p).

When\ < 0, let us assume, also, that "M C TM. Thengp(M) C 9B,(p),
mH = —{(m— 1)cor(p) +cas(p)}0:, and Jo; is tangent tay(M) at each point.

If m = 2n—1, then B,(p) is isometric to a geodesic ball of radigsin K"(}),
M is isometric to&B}n andy is an embedding.

Let us observe that the upper bound |eh implies that, forA > 0, p must
be not greater than the first zero mfcof(v/At) — sir?(v/At).

We remark, also, that the conditidn/"M < TM for A < 0 is automatically
fulfilled whenm = 2n — 1.

When )\ < 0 andp tends to infinity, we have, as a consequence of Theorem
1.1, that there is no isometric immersion of a compact riemannian manifold in
CH"()) satisfying|H| < (m+1)y/|\| andJ.»"M C TM.

Some of the new results that appear in thighter case are described in the
following corollaries. Herell : 9B)"" — CP"~'(1/s{(p)) denotes the Hopf
fibration on the geodesic sphec’ﬂésj’“ (see Sect. 4 for a description of it).

Corollary 1.2. Let M be of dimensio@n — 2. Let us suppose thal = K"(}),
p(M) C ij“ and (2n — 2)|H| < (2n — 3)cor(p) + cosr(p). WhenX < 0O, we
assume also that.J”’M C TM. Then there is a compact riemannian manifold
G of dimensior2n — 3, a riemannian submersion : M — G, and a minimal
immersiony : G — CP"~1(1/s2(p)) such that/l op = ¢ o m. Moreover,

p(M) = II~(p(G)).

Corollary 1.3. Let M andy be as in Corollary 1.2, but with n= 2. Then
p M — K?2()) is an isometric immersion of a flat torus in%), such that
(M) is an embedded torus and also a tubular hypersurface of radiyé)s, (p)

around an integral curve of & in 9B,

A look at the proof of Corollary 1.3, that we shall see in Sect. 4, shows that the
only minimal embedded compact surfacesﬁBﬁ*” containing the integral curves
of Jo, (or, equivalently, being totally real il ?(\)) are the tubes mentioned
therein. This gives some support to the “conjecture” that there are only a finite
number of these embeddings (cfr. [1]).

We shall prove Theorem 1.1 in Sect. 3 and its corollaries in Sect. 4. Section
2 is devoted to some preliminary computations.

The bound 1fh — 1)coy(p) + cosn(p) is the lowest possible sum of principal
curvatures of@Bgv” when A > 0 and the biggest one fox < 0. This explains
that, for A < 0, we have to add the conditiah/"M C TM to get rigidity, and
poses the problem of existence of immersions without this condition and lower
bounds on the mean curvature. Then, in Sect. 5 we give a theorem on immersions
in the complex hyperbolic space (Theorem 5.1) without the above condition but
with a lower bound orjH | (the minimum possible sum of principal curvatures
of 9B)" when\ < 0).
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We wish to thank M. Barros, A. Ros, and F. Urbano for their helpful com-
ments.

2. A formula for the laplacian (in M) of a function which is radial in M

From now on, since all the computations are local, we shall denote by the same
symbol local sections ofM @& .M, the corresponding local vector fields on
M alongyp, and their local extensions to local vector fieldsidn

We denote by5(r) the (1 1)-tensor field orM — cut(p) defined by

S(r)(A) = —Va0; for every A tangent toM — cut(p),
The following formula is well known (cfr. [9])
Vzr(A, B) = —(S(r)A, B) for everyA B tangent toM — cut(p), (2.1)

which implies
Ar =trS(r). (2.2)

Let us observe tha®(r)o, = 0 andS(r) restricted to the tangent space to the
geodesic spheréB,(p) of M of centrep and radius is the Weingarten map of
this sphere, and 8(r) is (2n — 1) times the mean curvature of this sphere.

On the other hand, an easy computation (see [10]) shows that

V2 (X,Y) = Vr(X,Y) + (X, Y), ) (2.3)

for every X, Y tangent toM, wherea denotes the second fundamental form of
the immersiory : M — M.

If {&}, is a local orthonormal frame of vector fields tangenttoand H
denotes the mean curvature Mf, from (2.1) and (2.3), it follows that

m

Ar =Y (S(r)a.&) —m(H,d,). (24)

i=1

If f : R — R is any C? function, we consider the functioh(r) =f or :
M — R. Then, it follows from (2.4) that

Af(r) = —f"(r)|o, |2 +1'(r) {Z(S(r)q,a> - m(H,@Q} . (2.5)

i=1

WhenM = K"()), we denote by5,(r) the operatoiS(r). Let us denote also
by S(r), S\(r) the quadratic forms associated to these operators and the metrics
on M andK"()\) respectively. The transplanted opera&(r) on M is defined
from S, (r) in the same way, (r) is defined fromR,(r). The following Lemma
is essentially well known
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Lemma 2.1. LetM be a Kahler manifold of real dimensio2n, such that, for some
p € M, R(r) < Rx(r) in Bi(p) for some t< c(p) if A < 0, and t < min{c(p),
ﬂ} if A > 0; then

S(r) < Sa(r) for everyq € Bi(p). (2.1.1)

Moreover, if the equality in (2.1.1) holds &B,(p), for somep < t, then there
exists a holomorphic isometry betweeg(f and Bp*v” which takesoB,(p) onto
OB,

14

Proof. The inequality (2.1.1) is proved in [9], [16] and [4], while the character-
ization of the equality can be seen in [12] or [5].

On the other hand, the expression fax(r) is the following (cfr. [6], page
138):

SA(r)Or =0, Syx(r)Jd = —coyp(r)I o, andSy(r)X = —coy(r)X  (2.6)

for every X orthogonal too, andJo; .
Then, under the hypotheses of Theorem 1.1, using (2.5) and (2.6), and the
inequality of Lemma 2.1, we have, if > 0,

Af(r) = —£"(r)|0, > +1/(r) {Z(S(r)e.,e,) - m{o, H)}

i=1

— ()]0, |2 +£'(r) {Z Sa(r)(e — (e, 0r)0r — <a,J6r>J8r),a>}
i=1
+f (r){z (Sa(N(&, 30 )Jar), &) — <8r,H>}

=—f"M)o P +1(r) {Z—cow)(a — (&, 0)0r — <a,J8r>J8r,a>}

i=1

+f’(r){Z{—co4,\(r)|<a,J8r>|2}—m(&r,H>}
i=1
=— "5 > +f'(r) cor(r)| o, 2

+H/(0{(— co4A(r)+COA(r))\(Jar)TIZ—mco,\(r)—m<8r,H>}
=(—f"(r) +f'(r)con(r)) [0, [> + ' (r)A (r)l(Jar)TI2

mf (r) (con(r) + (H, ;).
2.7)
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3. Proof of Theorem 1.1

Case) >0
We take ag the solutionf = —(1/)\)c, of the equation
_f 4+ f 1Cx -0
Sx

and taking account d{J4;)"| < 1 and|(d;,H)| < [H|, we get, from (2.7),
sa(r)?
ca(r)
Now, from the hypothesis ofH | and the fact that the functiom(— 1)(cy/sy) +
(Csrn/s4) is decreasing on the interval, (@), we have

s\(r)?
ca(r)

A(=(1/Nea(r) < A —may(r) +msy(r)[H|. (CH)

A(-A/Nea(r) < A

—macy(r) +s\(r) ((m _ 1)CA(r) + C4,\(r)) o

NORENGYE

From Hopf principle, this implies that\(—(1/A)c,)(r) = 0, and hence the
inequalities in (2.7), (3.1), and (3.2) must be equalities. Then, the function
M — R must be the constant, which amounts to say thai{M) c 0B,(p),
|(3O)"| =1(i.e.d0 istangenttdV), (H,d;) = —|H| and|H | = (m—1)cox(p)+
cou(p) (i.e. H = {—(m — 1)cor(p) — con(p)}r).

If m=2n—-1,9(M) = 0B,(p), and the equality in (2.7) implieS(r) = S\(r)
in B,(p), and from Lemma 2.1 we get thB(p) is isometric to a geodesic ball of
radiusp in K"()\). From these facts it follows thatis a local isometry between
M and 8837”. Then (cfr. [3], page 150y is a riemannian covering, but, since
5'Bl;\’“ is simply connectedy must be an isometry. This finishes the proof of
Theorem 1.1 when > 0.

Casel <0

Given any vector subbundIlg of the pullbacky*(TM) of TM by p, let us
denote byre the projector orkE. SinceJ. /"M C TM, we have

10 12+1Q8) P = 1= |7 im(@))*+ 1= |ma s m(@)* = 2= |7 s mearm Ok
(3.3)
Now, let us take a$ the solutionf = —(1/(4)))cay (or f = ;tz if A=0) of
the equation
_f" +f/C/\ :f/)\S)\
Sx Cy
Then, using (3.3), the hypothesis< 0, and the other facts we used when- 0,
we get

1
4 (_4)\(:“) <ASSR2— |7y mas MO [P) — MG —msiea(H, ;)

(3.4)
<AsZ2—mc +mscy|H| <0

From (3.4), the theorem follows by an argument similar to that of the tasé®.
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4. Proof of Corollaries 1.2 and 1.3

To begin with, let us recall the definition of the Hopf fibratiénh : 8Bp*x” —
CP"~1(1/(s{(p))). Letp be the centre ofB)"", let exp, be the exponential map
TpK"(\) — K"()), and letS*~! denote the unit sphere MK "()\). From
the knowledge of the Jacobi fields Ef"()\) it follows that, for every¢ € S,
eXp. e € = Sun(p)I O (exp,(p€)) and, for everyX,Y € TgSZ“*1 orthogonal to
J¢, exp,.X and exp,Y are orthogonal tdd; and satisfy(exp,, X, exy,,Y) =
s2(p)(X,Y) andexp,..JX = s\ (p)J exp,..X. From now on we shall call horizontal
vectors those ir6?"~* orthogonal toJ¢ and also those i@B)" orthogonal to
J ;. If we scale the metric 08*"~* by multiplying by s5(p), we have that exp
is an isometry on horizontal vectors which commutes Witfrurthermore, it is a
dilation of factorcs(p) on the vertical vectors, and it preserves the orthogonality
between horizontal and vertical vectors. Then, if we consider the Hopffmap
S — CP""}(1/(s5(p)), thenIl = F oexg,t : 9B)" — CP"~1(1/(s%(p))
is still a riemannian submersion which, restricted to horizontal vectors, commutes
with J, and it is also called the Hopf fibration. The fibres of this submersion are
the integral curves of 9;, which are closed geodesics of lengthsg (p).

Now, we are going to prove Corollary 1.2. Liest= 2n—2. A key observation
is that the conditiod 9, € TM implies that the integral curves of the vector field
Jo; which are inaBj’” and have some point in(M) are completely contained
in p(M). More precisely: ifc is an integral curve 089, in M, thenC=ypoc s
an integral curve o ¢, in 8837”, and hence it is a closed geodesia?iaj’“. If
p € ¢(R), theny~1(p) is finite, because is an immersion and/ is compact.
Thenc is closed (otherwiseg; ~1(¢(0)) would be infinite becausgis closed). All
the integral curves a0, in M being closed, and hence compact, they determine
a regular foliation7 on M which defines a quotient manifold = M /.7 of
dimension & — 3.

Now we claim that we can define a metric Gnso that the quotient map :
M — G be a riemannian submersion. In fact, for evgrg M, we consider the
orthogonal decompositiogM = Tq.7 & Hq andTyq0B) " = <J > &7
defining the distributiondd and.7# (<Jo; > is the 1-dimensional distribution
generated byl 0;). From Theorem 1.1y is an isometric immersion fronv
into 8837”, and this implies thap.q(Hq) C -724(q). Sincell is a riemannian
submersion with fibres the integral curvesJa¥, if % denotes the flow of the
vector fieldJ o, in 88}“, then ¢y, takes the distribution?Z isometrically into
itself. Moreover, if¢, is the flow ofJd; in M, then the above argument showing
thatC =y o c says thap o ¢y = ¢ oy andyp. o ¢ = ¢« ow,. From these facts it
follows easily thats, is an isometry fromHg onto Hy, ). This shows that the
metric we claimed can be defined. We will consi@&endowed with this metric.

Since the images by of the leaves of 7 are the fibres of the Hopf submer-
sion II, we can define the isometric immersign: G — CP"~1(1/s2(p)) by
p(m(x)) = II(p(x)). This definition and the fact that the fibres of the submersion
IT are the integral curves dfg; in 9B)-" implies that/I~(x(G)) = p(M).
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In order to prove thaty is minimal, we will first show that the immersion
p 1M — 9B " is minimal.

Let us observe that, fon > 0, the hypothesisn = 2n — 2 implies that
the conditionJ. /"M C TM is also satisfied. In fact, we know that, du,
O € .M andJo, € TM. Now, letX € /"M and assume it is orthogonal
to 9-. We have(IX,d;) = —(X,Jd) = 0 and, obviously,(X,JX) = 0, then
JX € TM, and the claim is proved.

Now, let {ex;n—1 = Or,exn} be a local orthonormal frame off/"M. The
remark above allows us to take a local orthonormal framd@Mf of the form
{e1=J30, & =Jen, 63, ...,€n 2}

If « is the second fundamental form of the immersipn M — K"(}\),
then, denoting by- the component orthogonal td of any vector, we have

a(30;,30r) = (AV30,0)" = (3(conn(P)I )" = —c0ar(p)5; - (41)

Sincep(M) C 883’”(p), we can consider the second fundamental fodnos
the immersion oM in 9B,"(p) anda of the immersion oBB )" (p) in K"(\).
Then

2n—2 2n—2

Y dle.e)=) {ala.e)-dla,e)}
i=1 i=1
=(2n — 2H — {—coa\(p) — (2n — 3)cor(p)}0r =0,

(4.2)

i.e., the immersion oM in 8837” is minimal, but this implies thap : G —
CP"~1(1/s%(p)) is minimal (cfr. [13], Lemma 2). This finishes the proof of Corol-
lary 1.2.

Corollary 1.3 follows from 1.2. In fact, ih = 2, G has dimension 1 and
is compact, then, the minimal immersignis the parametrization of a closed
geodesic ofLPY(1/s2(p)), which is a great circle, that is, a geodesic sphere of
radius ¢r/4)s\(p) around some poirg € CPY(1/s2(p)), thenp(M) = IT1((G))
is a tubular hypersurface ﬁBj’” of radius (r/4)s\(p) around7-1(q), which
is an integral curve ofld;. From the facts thaty(G) is a geodesicy(M) =
II7Y(¢(G)) and IT is a riemannian submersion with totally geodesic fibres, it
follows thatM has two orthogonal totally geodesic foliations, so it is locally the
product of two curves and, therefore, it is flat and since it admits two globally
well defined linearly independent vector fields, it is a torus. To end the proof we
observe thap : M — p(M) is a local isometry, then (cfr. [3], page 150) it is a
riemannian covering, ansl must be also a flat torus.

5. Further results

Theorem 1.1 is, in some sense, completeNbiof codimension 1 oM of any
codimension and > 0. However, forA < 0 andM of codimension greater than
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1, the additional conditiod. /"M C TM lead us to think that there could be
immersionsy : M — CH"(\) which do not satisfy the above condition, but
having its image contained in a geodesic ball of ragitend the maximum of
the norm of its mean curvature strictly less thayinf{(m— 1)cox(p) +cos(p)}.
The next proposition shows that this maximum |Bf| must be strictly greater
thancoy (p) for “small” codimension and greater than or equattg(p) for “big”
codimension.

Theorem 5.1. Let M be a compact Riemannian manifold of dimension m. Let
p M — CH"()\), A < 0, be an isometric immersion such the&M) C Bl;\=”
and|H| < coy(p). Thenl < m < n-—1, [H|=co\(p) and there exists a minimal
totally real isometric immersiop : M — CP"~1(1/s2(p)) such thaty is a
lifting of ¢ by IT.

Proof . Takingf = —(1/X)c, in (2.7), we get
1 S T2
A —)\C,\ < )\C [QO) |“—=mcy —m(H,d)sy < —mc, +m|H|s), <O0.
A

Again by Hopf principle, the above inequalities must be equalities, and hence

@ o,Jo € 4M, and

(b) H = —cox(p)0; .
These conditions imply that

(c) the immersiory is minimal in 8837”.

».(TM) must be orthogonal t¢, andJo,. Let O be the tensor of the rie-
mannian submersiof/ defined on horizontal vectors l®xY = (1/2)v[X, Y],
v being the projection onto the vertical distribution (in this case, the projection
on <Jo:>). It is well known that, for horizontal basic vector fields Y, one
hasOxY = vVxY, whereV is the riemannian connection @BPA’” (see [15] or
[7]). Then, denoting byy the second fundamental form 6837” inCH"()\), and
taking asX, Y the restriction top.(M) of local horizontal basic vector fields,
we get

;v[x,v] = OxY = uVxY = (VxY,J8)38, = —(VxAY), 8 I,
= (@(X,JY),0,)38 = —cor(p)(X,IY)I&:.

Thenv[X,Y] = 0 if and only if (X,JY) = 0. Since the Lie bracket of two
local vector fields tangent tp,(TM) must be tangent tg.(TM), we find that,
for all X,Y tangent top.(M), (X,JY) =0, i.e.,JTM C ./"M, which implies
1 < m < n-1. Finally, we only need to observe that the conditigiM C ./ M

is equivalent to say thakl,(p.q(M)) is totally real inTH(¢(q))CP”—1 for every
g € M and condition (c) is equivalent to say th&{(y(M)) is minimal inCP"—*

([13).

Remark .Forn = 2, the above theorem says that the only isometric immersions in
CH2()) contained inB)- with [H | < coy(p) are horizontal geodesics 68,2,
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. Castro and F. Urbano [2] have classified all the totally real minimal ta€FA
which are invariant under a 1-parameter group of holomorphic isometries. This
provides examples of immersions satisfying the hypotheses of Theorem 5.1, for
n=3 and m=2.

Let us observe that
m co\(p) < (M — 1)cor(p) +comn(p) if A <O

and
m co\(p) > (M — 1)cor(p) +conn(p) if A >0

For the case\ < 0 we have got a Theorem (5.1) with the smaller bound
m co\(p) and another Theorem (1.1) with the greater bound, the latter with the
additional restriction thal. /"M C TM. This condition has the effect of making
Jo; tangent to the image d¥l .

For A > 0, the bound given in Theorem 1.1 is the smaller one. Then it is
natural to ask if there is another theorem with the greater bouied, (p), with
some additional hypothesis. As in the case of negatj\this condition must force
the image ofM to be tangent to the directions of maximal normal curvature in
the geodesic sphere #€"()\). For A > 0 the direction having minimal normal
curvature is] 9;, which then should be avoided. Thus, the natural condition would
beJ. /"M c . /"M, i.e. thaty be a complex immersion. But it is known (cfr. [8])
that a compact Ehler submanifold immersed @P"()\) intersects every totally
geodesic complex hypersurfa€®"—1(\) in CP"(\), and therefore it cannot be
contained in any proper geodesic ball.
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