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All-diffractive achromatic Fourier-transform setup
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An achromatic Fourier transformation under broadband converging spherical-wave illumination is optically
achieved by use of only two on-axis blazed zone plates. The novel optical configuration provides the achromatic
Fraunhofer diffraction pattern of an arbitrary input signal with adjustable magnification. Further analysis of the
system permits us to obtain a simple analytical expression to evaluate both the longitudinal and the transversal
residual chromatic aberration, resulting in a compact achromatic Fourier transformer with low chromatic errors,
even for a wide spectral content of the point source.

It is well known that the recording of a diffraction
pattern of an input object illuminated by a polychro-
matic point source is chromatically blurred as a re-
sult of the wavelength dependence of the diffraction
phenomenon. Achromatic processors are designed to
compensate for the chromatic dispersion produced by
the broadband illumination, permitting simultaneous
achromatization of the entire diffraction pattern. In
this way the optical Fourier transform provided by an
ideal wavelength-independent Fourier transformer is
located in a single Fraunhofer plane and has the same
lateral magnification for all the spectral components
of the point source.'

Diffractive optical elements have some potential
advantages over conventional refractive or reflec-
tive components.2 On the other hand, the use of
diffractive elements seems to be limited to quasi-
monochromatic optical systems because of the severe
chromatic aberrations of these elements. However,
some appropriate combinations of planar holographic
lenses and refractive achromatic objectives permitted
researchers to obtain achromatic imaging setups pro-
ducing real images.3'4 Optical achromatic Fourier
transformers that contain holographic elements were
also reported.5 9 In the latter case the minimum
number of optical components is three, and at least
two of them are diffractive zone lenses.

In this Letter we present an all-diffractive achro-
matic Fourier-transform system based on white-light
converging spherical-wave illumination. Our opti-
cal device simply consists of two on-axis blazed zone
plates (ZP's). Here we again perform wavelength
compensation, taking advantage of the chromatic
aberrations of diffractive optical elements. The
above system provides the achromatic Fourier trans-
form (AFT) of the input signal at a finite distance,
with low chromatic errors over the entire visible
spectrum.

An analysis of the system leads to a simple rela-
tionship for evaluating in terms of a geometrical de-
scription both the longitudinal and the transversal
residual chromatic aberration. Moreover, our pro-

posed device uses two commercial diffractive ele-
ments and does not require any dispersive or achro-
matic glass objective, and thus it can be used in other
ranges of the electromagnetic spectrum, say, in soft
x rays. Finally, our proposal also has the following
remarkable feature: we can vary the scale factor of
the Fourier transform by simply moving the input
signal along the optical axis of the system, with the
achromatism remaining unchanged.

Let us remember that a blazed ZP has an associ-
ated image focal length Z = Zolo-/o that is propor-
tional to the wave number o- of the incident light.
The constant Zo is simply the value of the focal length
for the reference wave number o-o.

To discuss the key for implementing our achromatic
Fourier transformer we first recognize, using elemen-
tary geometrical-optics concepts, that only a set of
chromatic planar objects forming a frustum of a right
cone, as is indicated in Fig. 1, can be imaged by a sin-
gle ZP in an achromatic image. The achromatic pic-
ture is achieved at an arbitrary distance d 'if (i) the
optical center of the ZP coincides with the axial point
from which all the objects subtend the same angle,
and (ii) the distances to the ZP from the objects are
given by

d() Zodi' (1)
o-odi' - Zoo

Second, we reformulate the Fourier-transforming
property of a ZP as follows: Let an input trans-
parency be illuminated by a polychromatic spher-
ical wave-front beam having a spectral bandwidth

-2 - a-1, as shown in Fig. 2. By use of the Fresnel
diffraction theory, it is a straightforward matter to
show that, for each spectral component of the incom-
ing light, the ZP provides the Fraunhofer diffraction
pattern of the input signal at the corresponding con-
jugate plane of the source plane, i.e., at a distance
d' from the ZP given by

d '(c) = Zod or-' (2)
s-od - Zoo,
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or, equivalently, at a distance d + d' from point
source S such that

d + d'(a) = d - 0sod - ZoCa

and a converging ZP, respectively, and that the value
of the dimensionless parameter a, defined as

(3)

The notation is illustrated in Fig. 2. The scale factor
of the Fourier transformation, which is evaluated for
each wave number at the corresponding Fraunhofer
plane, is

x y z d'(a) Zo (4z
u v a d aod - Zoa

where x and y are Cartesian coordinates and u and v
are spatial frequencies. It is important to recognize
that the ratio x/[d + d'(a)]u or y/[d + d'(a-)]v is
independent of a. From Eqs. (3) and (4) we conclude
that

X y - =.ZOZ ~~~~~(5)
[d + d'(o-)]u [d + d'(a-)]v - d2 *-0

Therefore the set of monochromatic versions of the
Fourier transform of the input forms a frustum of a
right cone whose apex coincides with point source S
(see Fig. 2).

Consequently just a second blazed ZP with focal
distance Z0' for a- = a0, inserted at the source plane
(a fact that implies converging spherical-wave illu-
mination, i.e., d < 0), fulfills condition (i) and thus
is able to recombine such monochromatic images into
a single picture, providing the achromatic represen-
tation of the Fourier transform. The outline of our
suggested optical configuration is depicted in Fig. 3.

Condition (ii) also must be fulfilled for the AFT
to be achieved. If we want to obtain an AFT at a
distance Do' from the second zone plate, ZP2 , then
Eq. (1) should be rewritten as

Zo'
! = Zo X (11)

must be such that 0 < a < 4.
Since we have developed a first-order theory the

proposed setup suffers from residual chromatic aber-
rations. In order to evaluate them we consider that
ZP2 images the diffraction volume generated by ZP1.
Using the Gaussian lens formula, we have

- 1 1 a-o

d + d'(a) D+ Zola
(12)

where, of course, D' is the distance from ZP2 at which
the final Fraunhofer plane is located for each a.
Substituting Eqs. (3) and (9) into Eq. (12) and oper-
ating, we obtain

(13)1 + 1 (a --co)2

2 - Ea- ca-o

In the above calculations we have used the equality

ZoDo' 1

d2 ja-2 (14)

which we easily derived, taking into account
Eqs. (9)-(11). As we expect, the position of the
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d,(a-) = Zo'Do'a-
a-oDo' - Zola-

Thus in order to obtain our goal we set

d + d'(a) = -dl(C). (7)

Nevertheless, comparing Eqs. (3) and (6) we see that
Eq. (7) has no solution because the functional depen-
dences of d + d' and d, on a are different. Alter-
natively we develop a first-order theory. We replace
Eq. (7) by the two less restrictive conditions

d + d'(ro-) = -dl(ao), d'(ao) = -d,(ao), (8)

where i = dx/da-. The solution of this equation sys-
tem leads to the constraint that

Zo, =-d Zo (9)

which links the focal length of both ZP's with the
separation between them, and the AFT is obtained
at a distance Do' such that

D d - 2Zo (10)

To obtain a real AFT, i.e., Do' > 0, from Eqs. (9) and
(10) we infer that ZP1 and ZP2 should be a diverging

Fig. 1. Achromatic image produced by a blazed ZP.
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Fig. 2. Fourier-transforming properties of a blazed ZP
under polychromatic spherical-wave illumination.
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Fig. 3. All-diffractive achromatic Fourier transformer.
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Fig. 4. Plot of the geometrical residual CA of the optical
Fourier transformer in Fig. 3. Solid curve, a = 1 and
a-0 = 2 ,um'1; long-dashed curve, a = 1 and a-o =
1.87 gum-'; short-dashed curve, a = 0.3 and a-o =
1.87 gm-'.

final Fraunhofer diffraction pattern depends on r-.
This is equivalent to saying that the plane in which
the rigorous Fourier transform appears is slightly
different for each a-. Of course, for a = a-0, D'
becomes Do', and D' < Do' for the rest of the wave
numbers. Hence the final image volume is folded
about the plane located at the distance Do'. Con-
sequently the effective diffraction pattern at the
above plane is not an ideal wavelength-independent
Fourier transform but an achromatic version of the
Fraunhofer diffraction pattern of the transparency.

The scaling of the Fourier transform is x' = Mx,
y' = My, where x and y are given by Eq. (4) and the
lateral magnification M is such that M = D'(a-)/[d +
d'(a-)]. Taking into account Eqs. (5), (13), and (14),
we see that

x _ y =

U v

- z/ o'D

a-a-0

Note that, in general, a quadratic phase error, which
is different for each wave number, multiplies the dif-
ferent monochromatic replicas of the Fourier trans-
form. In the present study we do not take into
account the above phase curvature since we are in-
terested in an AFT in intensity.

A good indication of the longitudinal chromatic
aberration (LCA), expressed as a percentage, could
be given by the fractional difference

LCA= 100 Do' - D'(a-) (16)

Similarly we could define the transversal chromatic
aberration (TCA) as

TCA = 1 0 0 (=-) - (a) = 1 0 0 y'(a-) - (a) (17)
x1(a-0 ) y'(a-0)

From Eqs. (13) and (15) it is straightforward to show
that both geometrical chromatic errors have an iden-
tical analytical expression. We will refer to either of
them as the geometrical chromatic aberration (CA)
of the setup and now have

CA =
100

(18)
1 + (2 - V (a-a-0Sva(a- - co0 ),

The variation of the residual chromatic aberration
versus oa is dependent only on the value of a and the
choice of the parameter a-o. The function CA versus
oa for three different pairs of values of the parameters
a and a-o is plotted in Fig. 4. In this plot we assume
that the spectral content of the incident light is the
entire visible region, i.e., at1 = 1.4 Aum-' and a-2 =

2.5 1 tm'. It appears that having a less than 1 and a
proper selection of the value of o-o is enough to achieve
a chromatic error less than 8%, even with white light.

Concerning the scale factor, inspection of Eqs. (15)
and (18) reveals that the scale factor is proportional
to the distance z, and therefore it is a linear func-
tion of the longitudinal position of the input, but the
chromatic aberration is independent of it. Thus for
the first time to our knowledge an achromatic scale-
tunable Fourier transformer is obtained.

The achromatic Fourier transformer we propose
permits the extension of some of the conventional
monochromatic information-processing techniques to
polychromatic signal processing, and consequently
full-color signals could be employed as input objects.
In other words, the above setup can be thought of as
a first stage in the design of achromatic white-light
optical processors.

This research was supported by an agreement be-
tween the Universitat Jaume I and the Fundaci6
Caixa Castell6 (grant CE. 25.017/92), Spain. W. D.
Furlan gratefully acknowledges the financial support
of the Direcci6n General de Investigaci6n Cientffica y
T6cnica (Ministerio de Educaci6n y Ciencia), Spain.

P. Andr6s is also with the Departamento de Optica,
Universidad de Valencia, Burjassot, Spain.

*Permanent address, Comisi6n de Investigaciones
Cientificas, Centro de Investigaciones Opticas, La
Plata, Argentina.

References

1. J. L. Homer, Optical Signal Processing (Academic, San
Diego, Calif., 1987), Chap. 2.

2. B. J. Chang, Opt. Eng. 19, 642 (1980).
3. W. C. Sweatt, Appl. Opt. 16, 1390 (1977).
4. D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
5. R. H. Katyl, Appl. Opt. 11, 1255 (1972).
6. G. M. Morris, Opt. 20, 2017 (1981).
7. R. Ferrimre and J. P. Goedgebuer, Appl. Opt. 22, 1540

(1983).
8. S. Leon and E. N. Leith, Appl. Opt. 24, 3638 (1985).
9. P. Andr6s, J. Lancis, and W. D. Furlan, Appl. Opt. 31,

4682 (1992).


