A generalized finite difference method using Coatmèlec lattices

Generalized finite difference methods require that a properly posed set of nodes exists around each node in the mesh, so that the solution for the corresponding multivariate interpolation problem be unique. In this paper we first show that the construction of these meshes can be computerized using a relatively simple algorithm based on the concept of a Coatmèlec lattice. Then, we present a generalized finite difference method which provides a numerical solution of a partial differential equation over an arbitrary domain, using the generated meshes. The accuracy and mesh adaptivity of the method is evaluated using elliptical equations in several domains.