A transfer matrix method for the analysis of fractal quantum potentials
The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function.