Multiplexed vortex beam-based optical tweezers

The design and implementation of a multiplexed spiral phase mask in an experimental optical tweezer setup are presented. This diffractive optical element allows the generation of multiple concentric vortex beams with independent topological charges. The generalization of the phase mask for multiple concentric vortices is also shown. The design for a phase mask of two multiplexed vortices with different topological charges is developed. We experimentally show the transfer of angular momentum to the optically trapped microparticles by enabling orbiting dynamics around the optical axis independently within each vortex. The angular velocity of the confined particles versus the optical power in the focal region is also discussed for different combinations of topological charges.