Optical performance of a new design of trifocal intraocular lens based on the Devil's diffractive lens

In this work, we propose a new diffractive trifocal intraocular lens design with focus extension, conceived to provide a high visual performance at intermediate distances. This design is based on a fractal structure known as the "Devil's staircase". To assess its optical performance, numerical simulations have been performed with a ray tracing program using the Liou-Brennan model eye under polychromatic illumination. The simulated through the focus visual acuity was the merit function employed to test its pupil-dependence and its behavior against decentering. A qualitative assessment of the multifocal intraocular lens (MIOL) was also performed experimentally with an adaptive optics visual simulator. The experimental results confirm our numerical predictions. We found that our MIOL design has a trifocal profile, which is very robust to decentration and has low degree of pupil dependence. It performs better at intermediate distances than at near distances and, for a pupil diameter of 3 mm, it works like an EDoF lens over almost the entire defocus range.