Generation of programmable 3D optical vortex structures through devil's vortex-lens arrays

Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devilís vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipulation, have been evaluated.